Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A là biểu thức ta có:
CÂU1 :A = 1.2+2.3+3.4+......+99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
3A = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
Bài giải
\(B=1\cdot2^2+2\cdot3^2+3\cdot4^2+...+99\cdot100^2\)
\(B=1\cdot2\cdot\left(3-1\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-1\right)+...+99\cdot100\cdot\left(101-1\right)\)
\(B=1\cdot2\cdot3-1\cdot2+2\cdot3\cdot4-2\cdot3+...+99\cdot100\cdot101-99\cdot100\)
\(B=\left(1\cdot2\cdot3+2\cdot3\cdot4+...+99\cdot100\cdot101\right)-\left(1\cdot2+2\cdot3+...+99\cdot100\right)\)
Đặt \(C=1\cdot2\cdot3+2\cdot3\cdot4+...+99\cdot100\cdot101\)
\(4C=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+...+99\cdot100\cdot101\cdot\left(102-98\right)\)
\(4C=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+...+99\cdot100\cdot101\cdot102-98\cdot99\cdot100\cdot101\)
\(4C=99\cdot100\cdot101\cdot102\)
\(4C=101989800\)
\(C=101989800\text{ : }4\)
\(C=25497450\)
a)1.22 + 2.32 + 3.42 + ... + 99.1002
= 1.2(3 - 1) + 2.3(4 - 1) + 3.4(5 - 1) + ... + 99.100(101 - 1)
= 1.2.3 - 1.2 + 2.3.4 - 2.3 + 3.4.5 - 3.4 + ... + 99.100.101 - 99.100
= (1.2.3 + 2.3.4 + 3.4.5 + ... + 99.100.101) - (1.2 + 2.3 + 3.4 + ... + 99.100)
a) S1 = 2.4 + 4.6 + 6.8 + ...+ 100.102
6.S1 = 2.4.6 + 4.6.(8 - 2) + 6.8.(10 - 4) + ...+ 100.102.(104 - 98)
6.S1 = 2.4.6 + 4.6.8 - 2.4.6 + 6.8.10 - 4.6.8 + ....+ 100.102.104 - 98.100.102
6.S1 = (2.4.6 + 4.6.8 + 6.8.10 + ...+ 100.102.104) - (2.4.6 + 4.6.8 + ...+ 98.100.102)
6.S1 = 100.102.104 => S1 = 100.102.104 : 6 = ...
b) S2 = (1 - 2)(1+ 2) + (3 - 4).(3 + 4) + ...+ (55 - 56).(55 + 56) + 572
= (-1).(1 + 2) + (-1).(3 + 4) + ...+ (-1).(55 + 56) + 572 = (-1).(1 + 2+ 3 + 4+...+ 55 + 56) + 572 = -(1+ 56).56 : 2 + 572 = ...
c) S3 = 1.2.( 3 - 1) + 2.3.(4 - 1) + 3.4.(5 - 1) + ....+ 20.21.(22 - 1)
= (1.2.3 + 2.3.4 + 3.4.5 + ...+ 20.21.22) - (1.2 + 2.3 + ...+ 20.21)
Tính A = 1.2.3 + 2.3.4 + 3.4.5 + ...+ 20.21.22
4.A = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5(6 - 2) + ...+ 20.21.22.(23 - 19)
4.A = (1.2.3.4 + 2.3.4.5 + ...+ 20.21.22.23) - (1.2.3.4 + 2.3.4.5 + ....+ 19.20.21.22)
4.A = 20.21.22.23 => A =
Tính B = 1.2 + 2.3 + ...+ 20.21
3.A = 1.2.3 + 2.3.(4 - 1) + ...+ 20.21.(22 - 19) = (1.2.3 + 2.3.4 + ...+ 20.21.22) - (1.2.3+ ...+ 19.20.21) = 20.21.22 => B = ...
d) S4 = 1 + 8 + 27 + 64 + 125 = ....
a/ \(3A=1.2.3+2.3.3+3.4.3+4.5.3+...+29.30.3.\)
\(3A=1.2.3+2.3\left(4-1\right)+3.4.\left(5-2\right)+4.5\left(6-3\right)+...+29.30\left(31-28\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+29.30.31-28.29.30\)
\(3A=29.30.31\Rightarrow A=\frac{29.30.31}{3}=10.29.31=8990\)
c/ \(C=1+2\left(1+1\right)+3\left(2+1\right)+4\left(3+1\right)+...+30\left(29+1\right)\)
\(C=1+2+1.2+2.3+3+3.4+4+...+29.30+30\)
\(C=\left(1+2+3+4+...+30\right)+\left(1.2+2.3+3.4+...+29.30\right)\)
Dấu ngoặc thứ nhất là tính tổng 1 cấp số cộng, dấu ngoặc thứ 2 chính là câu a
b/ Câu b dãy viết ngắn quá chưa tìm ra quy luật
a) A = 1.2 + 2.3 + ... + 29.30
=> 3A = 1.2.3 + 2.3.(4-1) + ... + 29.30.(31-28)
= 1.2.3 + 2.3.4 - 1.2.3 + ... + 29.30.31 - 28.29.30
= 29.30.31
=> A = \(\frac{29.30.31}{3}=8990\)
\(A=1\cdot2+2\cdot3+...+151\cdot152\)
\(=1\left(1+1\right)+2\left(1+2\right)+...+151\left(1+151\right)\)
\(=\left(1+2+3+...+151\right)+\left(1^2+2^2+...+151^2\right)\)
\(=\dfrac{151\left(151+1\right)}{2}+\dfrac{151\left(151+1\right)\left(2\cdot151+1\right)}{6}\)
\(=151\cdot76+\dfrac{151\cdot152\cdot303}{6}\)
\(=151\cdot76+151\cdot7676=1170552\)
\(C=2\cdot4+4\cdot6+...+2024\cdot2026\)
\(=2\cdot2\left(1\cdot2+2\cdot3+...+1012\cdot1013\right)\)
\(=4\left[1\left(1+1\right)+2\left(1+2\right)+...+1012\left(1+1012\right)\right]\)
\(=4\left[\left(1+2+...+1012\right)+\left(1^2+2^2+...+1012^2\right)\right]\)
\(=4\left[1012\cdot\dfrac{1013}{2}+\dfrac{1012\left(1012+1\right)\left(2\cdot1012+1\right)}{6}\right]\)
\(=4\left[506\cdot1013+345990150\right]\)
\(=1386010912\)
\(M=1^2+2^2+...+2024^2\)
\(=\dfrac{2024\left(2024+1\right)\cdot\left(2\cdot2024+1\right)}{6}\)
\(=2024\cdot2025\cdot\dfrac{4049}{6}\)
=2765871900
\(N=1^3+2^3+...+100^3\)
\(=\left(1+2+3+...+100\right)^2\)
\(=\left[\dfrac{100\left(100+1\right)}{2}\right]^2\)
\(=\left[50\cdot101\right]^2=5050^2\)
\(Q=1^3+2^3+...+2024^3\)
\(=\left(1+2+3+...+2024\right)^2\)
\(=\left[\dfrac{2024\left(2024+1\right)}{2}\right]^2\)
\(=\left[1012\left(2024+1\right)\right]^2\)
\(=2049300^2\)