Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng bđt cauchy-shwarz dạng engel
\(\text{ Σ}_{cyc}\frac{a^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}\)
Ta có hđt \(\text{ Σ}_{cyc}a^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà a+b+c khác 0 nên a = b = c
\(\Rightarrow N=1\)
Biết làm câu a thì mình làm trước câu a thôi nha
Ta có OM // AB
\(\Rightarrow\)\(\frac{OM}{AB}=\frac{OD}{DB}\)( 1 )
ON // AB
\(\Rightarrow\)\(\frac{ON}{AB}=\frac{OC}{AC}\)( 2 )
AB // CD
\(\Rightarrow\)\(\frac{OD}{OB}=\frac{OC}{OA}\Rightarrow\frac{OD}{OB+OD}=\frac{OC}{OA+OC}\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\) ( 3 )
Từ ( 1 ) , ( 2 ) , ( 3 ) suy ra \(\frac{OM}{AB}=\frac{ON}{AB}\)
\(\Rightarrow\)\(OM=ON\left(ĐPCM\right)\)
Câu hỏi của trần trúc quỳnh - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
\(a^3+b^3=2.\left(c^3-8d^3\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3c^2-15d^3⋮3\)
\(a^3+b^3+c^3+d^3-\left(a+b+c+d\right)⋮3\Rightarrow a+b+c+d⋮3\)
tự c/n \(a^3+b^3+c^3+d^3-\left(a+b+c+d\right)⋮3\)nha, gợi ý 1 cái rồi còn lại tương tự
\(a^3-a=a.\left(a^2-1\right)=a.\left(a-1\right).\left(a+1\right)\)chia hết cho 3( vì a,b,c,d thuộc Z)
ợ mk ngu toán lắm, bn lm ơn giải rõ ràng ra hộ nhaaa