K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2019

B= \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\)\(\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)

B= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)\(\frac{1}{20}\)

vậy B= \(\frac{1}{20}\)

6 tháng 5 2019

b,A=(1/101+1/102+...+1/150)+(1/151+1/152+...1/200)>25/125+25/150+25/175+25/200=(1/5+1/6+1/7)+1/8=107/201+1/8>1/2+2/8=5/8

Vậy A>5/8

Nhớ k mik nha!!!!!!!!!!!!!

27 tháng 5 2017

a, Ta có: \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=100-\left[1+\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{3}\right)+....+\left(1-\frac{99}{100}\right)\right]\)

\(=100-\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)

\(=100-\left[100-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)

\(=100-100+\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)(đpcm)

b, Ta có: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)(đpcm)

27 tháng 5 2017

a, \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...\)\(+\frac{99}{100}\)
Xét: \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
    = \(\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)
    = \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)\)                                                          
    = \(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)( có 99 số hạng là 1 )
    = \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
    = \(\left(99+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
    = \(100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(\Rightarrow100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)( đpcm )
Vậy: ... 

12 tháng 4 2016

@@@@@

20 tháng 3 2019

1. Có 1 thừa số là \(1-\frac{5}{5}=0\) nên tích sẽ bằng 0

20 tháng 3 2019

2.\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.......\frac{49}{50}=\frac{1}{50}\)

13 tháng 4 2018

phần a dễ bạn tự làm đi tử thì bạn tính như bình thường còn mẫu thì:7.(\(\frac{1}{3.13}\)+\(\frac{1}{13.23}\)+\(\frac{1}{23.33}\))

\(\frac{7}{10}\).(\(\frac{1}{3}\)-\(\frac{1}{33}\))=\(\frac{7}{33}\)

b)(1+1/3+1/5+..+1/199)-(1/2+1/4+...+1/200)

(1+1/2+1/3+...+1/199+1/200)-(1/2+1/2+1/4+1/4+...+1/200+1/200)

=1+1/2+1/3+...+1/199+1/200-(1+1/2+1/3+...+1/100)

=1/101+1/102+...+1/200

20 tháng 4 2018

https://olm.vn/hoi-dap/question/60726.html

1 tháng 5 2019

\(B=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}......\frac{21}{20}\)

\(B=\frac{21}{2}\)

@@@

1 tháng 5 2019

\(B=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{20}\right)\)

\(\Rightarrow B=\left(\frac{2}{2}+\frac{1}{2}\right)\left(\frac{3}{3}+\frac{1}{3}\right)\left(\frac{4}{4}+\frac{1}{4}\right)...\left(\frac{20}{20}+\frac{1}{20}\right)\)

\(\Rightarrow B=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{21}{20}\)

\(\Rightarrow B=\frac{21}{2}\)

31 tháng 3 2019

a) \(\frac{53}{101}.\frac{-13}{97}+\frac{53}{101}.\frac{-84}{97}\)

\(=\frac{53}{101}\left(\frac{-13}{97}+\frac{-84}{97}\right)\)

\(=\frac{53}{101}.\frac{-97}{97}\)

\(=\frac{53}{101}.\left(-1\right)\)

\(=\frac{-53}{101}\)

b) \(\left(\frac{1}{57}-\frac{1}{5757}\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)

\(=\left(\frac{1}{57}-\frac{1}{5757}\right)\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)\)

\(=\left(\frac{1}{57}-\frac{1}{5757}\right).0\)

\(=0\)

31 tháng 3 2019

c) \(\frac{3^2}{25}.\frac{75}{-21}.\frac{50}{35}\)

\(=\frac{3^2.75.50}{25.\left(-21\right).35}\)

\(=\frac{3.3.25.3.5.5.2}{25.3.\left(-7\right).5.7}\)

\(=\frac{3.3.5.2}{\left(-7\right).7}\)

\(=\frac{90}{-49}\)

d) \(\frac{25.48-25.18}{20.5^3}\)

\(=\frac{25\left(48-18\right)}{10.2.125}\)

\(=\frac{25.10.3}{10.2.25.5}\)

\(=\frac{3}{10}\)