K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2016

b)\(\left(9x^2-16y^2\right):\left(3x-4y\right)\)

=\(\left[\left(9x^2\right):\left(3x\right)\right]+\left[\left(-16y^2\right):\left(-4y\right)\right]\)

=\(3x+4y\)

22 tháng 12 2016

a)\(8x^3-\left(4x^2+2x+1\right)\left(2x-1\right)\)

=\(8x^3-\left(8x^3-4x^2+4x^2-2x+2x-1\right)\)

=\(8x^3-\left(8x^3-1\right)\)

=\(8x^3-8x^3+1\)

=1

9 tháng 7 2019

Bài 1:tìm x ,biết:

a) (2x - 1)(3x + 2) - 6x(x + 1) = 0

\(\Leftrightarrow6x^2+x-2-6x^2-6x=0\)

\(\Leftrightarrow-5x=2\)

\(\Leftrightarrow x=\frac{-2}{5}\)

b) \(\left(4x-1\right)^2-\left(2x+1\right)\left(8x-3\right)=0\)

\(\Leftrightarrow16x^2-8x+1-16x^2-2x+3=0\)

\(\Leftrightarrow-10x=-4\)

\(\Leftrightarrow x=\frac{2}{5}\)

c) \(4x^2-1=2\left(2x+1\right)\)

\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-2\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)

2a) \(4x^2-9y^2-6y-1=4x^2-\left(3y+1\right)^2\)

\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)

b) \(4x^2-1-2x\left(2x-1\right)=\left(2x-1\right)\left(2x+1\right)-2x\left(2x-1\right)\)

\(=1.\left(2x-1\right)\)

c) \(x^2-8x-4y^2+16=\left(x-4\right)^2-4y^2\)

\(=\left(x-4-2y\right)\left(x-4+2y\right)\)

d) \(9x^2-12x-y^2+4=\left(3x-2\right)^2-y^2\)

\(=\left(3x-2-y\right)\left(3x-2+y\right)\)

e) \(4x^2+10x-5=4x^2+2.2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-5\)

\(=\left(2x+\frac{5}{2}\right)^2-\frac{45}{4}\)

\(=\left(2x+\frac{5+3\sqrt{5}}{2}\right)\left(2x+\frac{5-3\sqrt{5}}{2}\right)\)

13 tháng 7 2017

Tính:

a) (2x + 3)3 = (2x)3 + 3.(2x)2.3 + 3.2x.32 + 33 = 8x3 + 36x2 + 54x + 27

b) (2x - 3)(4x2 + 6x + 9) = (2x - 3)[(2x)2 + 2x.3 + 32] = (2x)3 - 33 = 8x3 - 27

c) (3x + 4y)(9x2 - 12xy + 16y2) = (3x + 4y)[(3x)2 - 3x.4y + (4y)2] = (3x)3 + (4y)3 = 27x3 + 64y3.

13 tháng 7 2017

a. (2x+3)3 = (2x)3+3.(2x)2.3+3.2x.32+33=8x +36x2+54x2+9=8x+90x2+9

b. (2x-3) (4x2+6x+9) = 2x.4x2+2x.6x+2x.9-3.4x2-3.6x-3.9 = 8x3+12x2+18x-12x2-18x-27 = 8x3-27

c. (3x+4y) (9x2-12xy+16y2) = 3x.9x2-3x.12xy+3x.16y2+4y.9x2-4y.12xy+4y.16y2= 27x3-36x2y+48xy2+36x2y-48xy2+64y3

30 tháng 9 2016

Bài 2

a) 4x(x-3)-3x+9

=4x(x-3)-3(x-3)

= (x-3)(4x-3)

b) x3+2x2-2x-4

=(x3+2x2)-(2x+4)

=x2(x+2)-2(x+2)

=(x+2)(x2-2)

c) 4x2-4y+4y-1

=4x2-1

=(2x-1)(2x+1)

d) x5-x

=x(x4-1)

=x(x2-1)(x2+1)

31 tháng 10 2018

a) 4x(x-3)-3x+9

= 4x(x-3) - 3(x-3)

= (x-3)(4x-3)

b)x3 + 2x2 - 2x - 4

= x2(x + 2) - 2(x + 2)

= (x+2)(x2-2)

c) 4x2 - 4y +4y -1

= [(2x)2-12] + (-4y+4y)

= (2x+1)(2x-1)

d) x5-x

= x(x4 - 1)

10 tháng 10 2021

\(a)\) \(3x^2-6x=3x\left(x-2\right)\)

\(b)\) \(9x^3-9x^2y-4x+4y\)

\(=9x^2.\left(x-y\right)-4\left(x-y\right)\)

\(=\left(9x^2-4\right)\left(x-y\right)\)

\(=[\left(3x\right)^2-2^2]\left(x-y\right)\)

\(=\left(3x-2\right)\left(3x+2\right)\left(x-y\right)\)

\(c)\) \(x^3-2x^2-8x\)

\(=x\left(x^2-2x-8\right)\)

\(=x\left(x+2\right)\left(x-4\right)\)

24 tháng 7 2019

\(a,VT=\left(a+b+c\right)\left(a-b+c\right)\)

\(=\left(a+c+b\right)\left(a+c-b\right)\)

\(=\left(a+c\right)^2-b^2\)

\(=a^2+2ac+c^2-b^2=VP\)

\(b,VT=\left(3x+2y\right)\left(3x-2y\right)-\left(4x-2y\right)\left(4x+2y\right)\)

\(=9x^2-4y^2-16x^2+4y^2=-7x^2=VP\)

\(c,VT=x^3-1-x^3-1=-2=VP\)

\(d,VT=8x^3+1-8x^3+1=2=VP\)

\(e,VT=\left(x^2+2xy+4y^2\right)\left(x-2y-2x+1\right)\)

\(=\left(x^2+2xy+4y^2\right)\left(-x-2y+1\right)\)

\(=-x^3-2x^2y+x^2-2x^2y-4xy^2+2xy-4xy^2-8y^3+4y^2\)

( bn kiểm tra lại đề nhé)

16 tháng 10 2016

Rút gọn

\(\left(2x+1\right)\left(4x^2-3x+1\right)+\left(2x-1\right)\left(4x^2+3x+1\right)\)

\(=8x^3-12x^2+2x+4x^2-3x+1+8x^3+12x^2+2x-4x^2-3x-1\)

\(=16x^3-2x\)

Phân tích đa thức thnahf nhân tử

\(4y^2+16y-x^2-8x\)

\(=\left(4y^2-x^2\right)+\left(16y-8x\right)\)

\(=\left(2y-x\right)\left(2y+x\right)+8\left(2y-x\right)\)

\(=\left(2y-x\right)\left(2y+x+8\right)\)

Chứng minh .............

Có: \(x^2+x+1=\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì: \(\left(x+\frac{1}{2}\right)^2\ge0\)

=> \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Kết luận......

 

3 tháng 10 2017

đề bài đâu

ucche

3 tháng 10 2017

cô hk ghi nha bn

sorry nha