Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(4x^4-21x^2y^2+y^4=(4x^4+4x^2y^2+y^4)-25x^2y^2\)
\(=(2x^2+y^2)^2-(5xy)^2\)
\(=(2x^2+y^2-5xy)(2x^2+y^2+5xy)\)
b)
\(x^5-5x^3+4x=x(x^4-5x^2+4)\)
\(=x(x^4-x^2-4x^2+4)\)
\(=x[x^2(x^2-1)-4(x^2-1)]\)
\(=x(x^2-4)(x^2-1)=x(x-2)(x+2)(x-1)(x+1)\)
c)
\(x^3+5x^2+3x-9=x^3-x^2+6x^2-6x+9x-9\)
\(=x^2(x-1)+6x(x-1)+9(x-1)\)
\(=(x-1)(x^2+6x+9)\)
\(=(x-1)(x^2+2.3x+3^2)=(x-1)(x+3)^2\)
d)
\(x^{16}+x^8-2=x^{16}-1^{16}+x^8-1^{16}\)
\(=(x-1)(x^{15}+x^{14}+...+x+1)+(x-1)(x^7+x^6+...+x+1)\)
\(=(x-1)(x^{15}+x^{14}+...+x^8+2x^7+2x^6+2x^5+...+2x+2)\)
a,\(xy+3x-7y-21\)
\(=x\left(y+3\right)-7\left(y+3\right)\)
\(=\left(y+3\right)\left(x-7\right)\)
\(b,2xy-15-6x+5y\)
\(=\left(2xy-6x\right)+\left(-15+5y\right)\)
\(=2x\left(y-3\right)-5\left(3-y\right)\)
\(=2x\left(y-3\right)+5\left(y-3\right)\)
\(=\left(y-3\right)\left(2x+5\right)\)
Bài 1
A,7x − 6x 2 − 2 = −(6x 2 − 7x + 2)
= −(6x 2 − 3x − 4x + 2)
= −[3x(2x − 1) − 2(2x − 1)] = −(3x − 2)(2x −1)
b,\(2x^2+3x-5\)
=\(2x^2-2x+5x-5\)=\(2x\left(x-1\right)+5\left(x-1\right)=\left(2x+5\right)\left(x-1\right)\)
I don't now
sorry
...................
nha
b) \(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)
\(\Leftrightarrow\)\(\left(3x-2\right)\left(3x+3\right)^2\left(3x+8\right)+144=0\)
Đặt: \(3x+3=a\)pt trở thành:
\(\left(a-5\right)a^2\left(a+5\right)+144=0\)
\(\Leftrightarrow\)\(a^4-25a^2+144=0\)
\(\Leftrightarrow\)\(\left(a-4\right)\left(a-3\right)\left(a+3\right)\left(a+4\right)=0\)
đến đây bạn tìm a rồi tính x
c) \(\left(4x-5\right)\left(2x-3\right)\left(x-1\right)=9\)
\(\Leftrightarrow\)\(\left(4x-5\right)\left(4x-6\right)\left(4x-4\right)-72=0\)
Đặt \(4x-5=a\)pt trở thành:
\(a\left(a-1\right)\left(a+1\right)-72=0\)
\(\Leftrightarrow\)\(a^3-a-72=0\)
p/s: ktra lại đề
d) \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)
\(\Leftrightarrow\)\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)=0\)
\(\Leftrightarrow\)\(\left[\left(2x^2+x-2013\right)-2\left(x^2-5x-2012\right)\right]^2=0\)
\(\Leftrightarrow\)\(\left(11x+2011\right)^2=0\)
đến đây làm nốt
1)x2-8x-9
= x^2 - 9x +x -9
= x(x+1) - 9 (x+1)
= (x-9) (x+1)
2)x2+3x-18
3)x3-5x2+4x
=x^3 - 4x^2 - x^2 + 4x
= x^2 (x-1) - 4x(x-1)
= (x^2 - 4x) (x-1)
= x(x-4)(x-1)
4)x3-11x2+30x
5)x3-7x-6
6)x16-64
\(=\left(x^8\right)^2-8^2\)
\(=\left(x^8-8\right)\left(x^8+8\right)\)
7)x3-5x2+8x-4
8)x2-3x+2
= x^2 - 2x - x +2
= x(x-1) -2(x-1)
= (x-2)(x-1)
1) \(\left(x-9\right)\left(x+1\right)\) 2) \(\left(x-3\right)\left(x+6\right)\) 3) \(x\left(x-4\right)\left(x-1\right)\)
4) \(x\left(x-6\right)\left(x-5\right)\) 5)\(\left(x-3\right)\left(x+1\right)\left(x+2\right)\) 6) ........
7) \(\left(x-1\right)\left(x-2\right)\left(x-2\right)\) 8) \(\left(x-2\right)\left(x-1\right)\)
Bài 1 :
a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)
TH1 : \(x-3=2\Leftrightarrow x=5\)
TH2 : \(x-3=-2\Leftrightarrow x=1\)
b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
TH1 : \(x-6=0\Leftrightarrow x=6\)
TH2 : \(x+4=0\Leftrightarrow x=-4\)
c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)
\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)
d, tương tự
a) \(4x^4-21x^2y^2+y^4=\left(4x^4+4x^2y^2+y^4\right)-25x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(5xy\right)^2=\left(2x^2-5xy+y^2\right)\left(2x^2+5xy+y^2\right)\)
b) \(x^5-5x^3+4x=x\left(x^4-5x^2+4\right)=x\left[\left(x^4-4x^2\right)-\left(x^2-4\right)\right]\)
\(=x\left[x^2\left(x^2-4\right)-\left(x^2-4\right)\right]=x\left(x^2-1\right)\left(x^2-4\right)\)
\(=x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
c ) \(x^3+5x^2+3x-9=\left(x^3-x^2\right)+\left(6x^2-6x\right)+\left(9x-9\right)\)
\(=x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)\)
\(=\left(x^2+6x+9\right)\left(x-1\right)=\left(x+3\right)^2\left(x-1\right)\)
d ) \(x^{16}+x^8-2=x^{16}-x^8+2x^8-2=x^8\left(x^8-1\right)+2\left(x^8-1\right)\)
\(=\left(x^8+2\right)\left(x^8-1\right)=\left(x^8+2\right)\left(x^4-1\right)\left(x^4+1\right)\)
\(=\left(x^8+2\right)\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)=\left(x^8+2\right)\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\)
e ) \(x^3-11x^2+30x=0\)
\(\Leftrightarrow x\left(x^2-11x+30\right)=0\)
\(\Leftrightarrow x\left[\left(x^2-5x\right)-\left(6x-30\right)\right]=0\)
\(\Leftrightarrow x\left[x\left(x-5\right)-6\left(x-5\right)\right]=0\)
\(\Leftrightarrow x\left(x-6\right)\left(x-5\right)=0\)
\(\Rightarrow x=0orx=5orx=6\) (or hoặc)
Vậy \(x\in\left\{0;5;6\right\}\)