K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

a,

\(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\\ =1\cdot\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\\ =\left(2-1\right)\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\\ =\left(2-1\right)\cdot\dfrac{1}{2^2}+\left(2-1\right)\cdot\dfrac{1}{2^3}+...+\left(2-1\right)\cdot\dfrac{1}{2^{2006}}\\ =\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{2005}}-\dfrac{1}{2^{2006}}\\ =\dfrac{1}{2}-\dfrac{1}{2^{2006}}\\ =\dfrac{2^{2005}}{2^{2006}}-\dfrac{1}{2^{2006}}\\ =\dfrac{2^{2005}-1}{2^{2006}}\)

b,

\(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{59\cdot61}\\ =\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\\ =\dfrac{1}{5}-\dfrac{1}{61}\\ =\dfrac{56}{305}\)

c,

\(\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\\ =\dfrac{7}{2}\cdot\left(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{9999}\right)\\ =\dfrac{7}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{7}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{7}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{7}{2}\cdot\dfrac{100}{101}\\ =\dfrac{350}{101}\)

12 tháng 8 2017

Đặt:

\(X=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)

\(2X=2\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)

\(2X=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)

\(2X-X=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)\(X=\dfrac{1}{2}-\dfrac{1}{2^{2016}}\)

\(Y=\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+...+\dfrac{2}{59.61}\)

\(Y=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+...+\dfrac{1}{59}-\dfrac{1}{61}\)

\(Y=\dfrac{1}{5}-\dfrac{1}{61}=\dfrac{56}{305}\)

\(Z=\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\)

\(Z=\dfrac{7}{1.3}+\dfrac{7}{3.5}+\dfrac{7}{5.7}+...+\dfrac{7}{99.101}\)

\(Z=\dfrac{7}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(Z=\dfrac{7}{2}\left(1-\dfrac{1}{101}\right)\)

\(Z=\dfrac{7}{2}.\dfrac{100}{101}=\dfrac{700}{202}\)

27 tháng 7 2018

a. = 1/20 + 5 - 1/2

= 101/20 - 1/2

= 91/20

b. = ( 6/15 - 3/5) - ( 7/8 + 2/16) + 3

= -1/5 - 1 + 3

= 9/5

c. = 15/7 . ( 3/5 - 8/5)

= 15/7 . ( -1)

= - 15/7

e. = -14/9 - 3/9

= -17/9

f. = 19/21 . ( 15/17 + 2/17) + 13/21

= 19/21 . 1 + 13/21

= 32/21

g. = 43/12 : 2 + 5/24

= 43/24 + 5/24

= 2

16 tháng 9 2017

a) \(A=\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)

\(=\dfrac{1}{3}-\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)

\(=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)-\left(\dfrac{3}{4}+\dfrac{2}{9}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)

\(=\left(\dfrac{5}{15}+\dfrac{9}{15}+\dfrac{1}{15}\right)-\left(\dfrac{27}{36}+\dfrac{8}{36}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)

\(=1-1+\dfrac{1}{72}\)

\(=0+\dfrac{1}{72}=\dfrac{1}{72}\)

b) \(B=\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{2}{9}+\dfrac{7}{13}-\dfrac{2}{11}-\dfrac{5}{9}+\dfrac{3}{7}-\dfrac{1}{5}\)

\(=\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{5}{9}-\dfrac{5}{9}\right)-\left(\dfrac{2}{9}-\dfrac{7}{13}+\dfrac{2}{11}\right)\)

\(=0+0+0-\left(\dfrac{286}{1287}-\dfrac{693}{1287}+\dfrac{234}{1287}\right)\)

\(=-\left(-\dfrac{173}{1287}\right)\)

\(=\dfrac{173}{1287}\)

c) \(C=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-.....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(=\dfrac{1}{100}-\left(\dfrac{1}{100.99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)

\(=\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)

\(=\dfrac{-49}{50}\)

11 tháng 7 2017

a) \(\dfrac{-2}{3}+\dfrac{3}{4}-\dfrac{-1}{6}+\dfrac{-2}{5}=\dfrac{1}{12}-\dfrac{-1}{6}+\dfrac{-2}{5}=\dfrac{1}{4}+\dfrac{-2}{5}=\dfrac{-3}{20}\)

b) \(\dfrac{-2}{3}+\dfrac{-1}{5}+\dfrac{3}{4}-\dfrac{5}{6}-\dfrac{-7}{10}=\left(\dfrac{-2}{3}-\dfrac{5}{6}\right)+\left(\dfrac{-1}{5}-\dfrac{-7}{10}\right)+\dfrac{3}{4}\)

\(=\dfrac{-3}{2}+\dfrac{1}{2}-\dfrac{3}{4}\)

= \(=-1-\dfrac{3}{4}\)

\(=\dfrac{-1}{4}\)

c)\(\dfrac{1}{2}-\dfrac{-2}{5}+\dfrac{1}{3}+\dfrac{5}{7}-\dfrac{-1}{6}+\dfrac{-4}{35}+\dfrac{1}{41}\)

= \(\left(\dfrac{1}{2}-\dfrac{-1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-4}{35}+\dfrac{5}{7}-\dfrac{-2}{5}\right)+\dfrac{1}{41}\)

= \(1+1+\dfrac{1}{41}\)

= \(\dfrac{83}{41}\)

d)\(\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

= \(\dfrac{1}{100}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{98}+...+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{1}\)

= \(\dfrac{1}{100}-\dfrac{1}{1}\)

= \(\dfrac{-99}{100}\)

11 tháng 7 2017

d đảo 1/1.2.1/2.3 ... 1/99.1000

=1/1 -1/2 +1/2-1/3 ... -1/99 - 1/1000

=1/1 -1/1000

=999/1000

19 tháng 11 2022

a: \(=\left(\dfrac{15}{34}+\dfrac{19}{34}\right)+\left(\dfrac{7}{21}+\dfrac{2}{3}\right)-\dfrac{32}{17}=2-\dfrac{32}{17}=\dfrac{2}{17}\)

b: \(=-8\cdot\dfrac{1}{4}:\left(\dfrac{9}{4}-\dfrac{7}{6}\right)=-2:\dfrac{27-14}{12}=\dfrac{-2\cdot12}{13}=-\dfrac{24}{13}\)

c: \(=\dfrac{-5}{3}\left(16+\dfrac{2}{7}+28+\dfrac{2}{7}\right)=\dfrac{-5}{3}\cdot\left(44+\dfrac{4}{7}\right)\)

=-520/7

3 tháng 11 2018

f, \(\dfrac{2^9.4^{10}}{8^8}=\dfrac{2^9.\left(2^2\right)^{10}}{\left(2^3\right)^8}=\dfrac{2^9.2^{20}}{2^{24}}=\dfrac{2^{29}}{2^{24}}=2^5=32\)

16 tháng 11 2022

a: \(=\left(\dfrac{1}{3}-\dfrac{4}{3}\right)+\dfrac{14}{25}+\dfrac{11}{25}+\dfrac{2}{7}=\dfrac{2}{7}\)

b: \(=\dfrac{3}{7}-\dfrac{5}{2}-\dfrac{3}{5}+\dfrac{4}{7}+\dfrac{3}{2}-\dfrac{2}{5}=1-1-1=-1\)

c: \(=\dfrac{4}{25}+\dfrac{7}{5}\cdot\dfrac{5}{2}-2=\dfrac{4}{25}+\dfrac{7}{2}-2=\dfrac{83}{50}\)

21 tháng 12 2018

a)\(\dfrac{7}{8}.\left(\dfrac{2}{12}+\dfrac{4}{10}\right)=\dfrac{7}{8}.\left(\dfrac{10}{60}+\dfrac{24}{60}\right)=\dfrac{7}{8}.\dfrac{17}{30}=\dfrac{114}{240}\)

b)\(\dfrac{3}{2}-\dfrac{5}{6}\left(\dfrac{1}{2}\right)^2+\sqrt{4}=\dfrac{3}{2}-\dfrac{5}{6}.\dfrac{1}{4}+2=\dfrac{3}{2}-\dfrac{5}{24}+2=\dfrac{36}{24}-\dfrac{5}{24}+\dfrac{48}{24}=\dfrac{79}{24}\)c)\(\dfrac{15}{34}+\dfrac{7}{21}+\dfrac{19}{34}-1\dfrac{15}{17}+\dfrac{2}{3}=\left(\dfrac{15}{34}+\dfrac{19}{34}\right)+\left(\dfrac{7}{21}+\dfrac{2}{3}\right)-1\dfrac{15}{17}=1+\left(\dfrac{7}{21}+\dfrac{14}{21}\right)-\dfrac{32}{17}=1+1-\dfrac{32}{17}=2-\dfrac{32}{17}=\dfrac{34}{17}-\dfrac{32}{17}=\dfrac{2}{17}\)d)\(\left(-2\right)^3.\left(\dfrac{3}{4}-0,25\right):\left(2\dfrac{1}{4}-1\dfrac{1}{6}\right)=-8.\left(\dfrac{3}{4}-\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)=-8.\dfrac{2}{4}:\left(\dfrac{54}{24}-\dfrac{28}{24}\right)=-8.\dfrac{2}{4}:\dfrac{13}{12}=-4.\dfrac{12}{13}=\dfrac{-48}{13}\)e)\(16\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)+28\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)=16\dfrac{2}{7}.\left(-\dfrac{5}{3}\right)+28\dfrac{2}{7}.\left(-\dfrac{5}{3}\right)=\left(16\dfrac{2}{7}+28\dfrac{2}{7}\right).\left(-\dfrac{5}{3}\right)=\left(\dfrac{120}{7}+\dfrac{196}{7}\right).\left(-\dfrac{5}{3}\right)=\dfrac{316}{7}.\left(-\dfrac{5}{3}\right)=-\dfrac{1580}{21}\)

10 tháng 11 2018

bài này tự almf

11 tháng 11 2018

a) 119/240

b)1/6

c)2/17

d)-48/13

e)-520/7

10 tháng 10 2018

A= \(\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{5}{7}-\dfrac{7}{9}+\dfrac{9}{11}-\dfrac{5}{7}+\dfrac{3}{5}-\dfrac{9}{11}=\dfrac{1}{3}-\dfrac{7}{9}=\dfrac{3}{9}-\dfrac{7}{9}=-\dfrac{4}{9}\)

12 tháng 10 2022

\(B=\left(\dfrac{1}{5}+\dfrac{2}{15}+\dfrac{2}{3}\right)+\left(-\dfrac{2}{7}+\dfrac{1}{42}-\dfrac{13}{28}-\dfrac{1}{4}\right)\)

\(=\dfrac{3+2+10}{15}+\dfrac{-2\cdot12+2-13\cdot3-21}{84}\)

=1-82/84

=2/84=1/42

\(C=\dfrac{1}{50}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\right)\)

\(=\dfrac{1}{50}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

\(=\dfrac{1}{50}-1+\dfrac{1}{50}=\dfrac{1}{25}-1=-\dfrac{24}{25}\)

\(D=\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{3}{11}\)

8 tháng 9 2018

\(a,A=\dfrac{7}{35}+\left(-1\dfrac{3}{4}+\dfrac{12}{7}\right)-\left(\dfrac{1}{4}-\dfrac{2}{7}-\dfrac{12}{35}\right)-\dfrac{3}{7}\)\(A=\dfrac{7}{35}-\dfrac{7}{4}+\dfrac{12}{7}-\dfrac{1}{4}+\dfrac{2}{7}+\dfrac{13}{35}-\dfrac{3}{7}\\ A=\left(\dfrac{7}{35}+\dfrac{13}{35}\right)-\left(\dfrac{7}{4}-\dfrac{1}{4}\right)+\left(\dfrac{12}{7}+\dfrac{2}{7}-\dfrac{3}{7}\right)\)

\(A=\dfrac{4}{7}-\dfrac{3}{2}+\dfrac{11}{7}\\ A=\left(\dfrac{4}{7}+\dfrac{11}{7}\right)-\dfrac{3}{2}\\ A=\dfrac{15}{7}-\dfrac{3}{2}=\dfrac{9}{14}\)