Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a :
\(VT=\) \(\left(x-1\right)\left(x^2+x+1\right)=x^3-1^3=VP\)
Câu b :
\(VT=\)\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4=VP\)
Tương tự bạn khai triển là ra nhé
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
Áp dụng Cauchy:
\(\left(x^2+1\right)\ge2\sqrt{x^2\cdot1}=2x\)(dấu = khi x=1)
\(\left(y^2+4\right)\ge2\sqrt{y^2\cdot4}=4y\)(dấu = khi y=2)
\(\left(z^2+9\right)\ge2\sqrt{z^2\cdot9}=6z\)(dấu = khi z=3)
\(\Rightarrow\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge48xyz\)(dấu = khi x=1, y=2, z=3)
ĐK đề bài => x=1, y=2, z=3. Thay x, y, z vào tính được P.
a/\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1=x^3-1\left(đpcm\right)\)
b/ \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4=x^4-y^4\left(đpcm\right)\)
c/ \(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)=x^2+xy+xz+y^2+xy+yz+z^2+zx+yz=x^2+y^2+z^2+2xy+2yz+2zx\left(đpcm\right)\)
d/ \(\left(x+y+z\right)^3=\left(x+y\right)^3+3\left(x+y\right)^2z+3z^2\left(x+y\right)+z^3\)
\(=\left(x+y\right)^3+3z\left(x^2+2xy+y^2\right)+3z^2\left(x+y\right)+z^3\)
\(=x^3+3x^2y+3xy^2+y^3+3x^2z+6xyz+3y^2z+3z^2x+3yz^2+z^3\)
\(=x^3+y^3+z^3+3xyz+3x^2y+3xy^2+3x^2z+3y^2z+3y^2x+3yz^2+3xyz\)
\(=x^3+y^3+z^3+\left(x+z\right)\left(3xy+3xz+3y^2+3yz\right)\)
\(=x^3+y^3+z^3+\left(x+z\right)\left[3x\left(y+z\right)+3y\left(y+z\right)\right]\)
\(=x^3+y^3+z^3+\left(x+z\right)\left(y+z\right)\left(3x+3y\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)
a, Xét vế trái ta có:
(x-1)(x^2+ x+1)=x^3+ x^2+ x- x^2- x-1
=x^3+ (x^2- x^2)+(x-x)-1
=x^3-1
Vậy...
b,Xét vế trái ta có:(x^3+ x^2y+ xy^2+ y^3)(x-y)
=x^4- x^3y+ x^3y- x^2- y^2+ x^2y^2- xy^3+ xy^3- y^4
=x^4-y^4
Vậy ........
c, Xét vế trái ta có:
(x+y+z)^2=(x+y+z)(x+y+z)
=x^2+ xy+ xz+ yx+y^2+ yz+ zx+ zy+ z^2
=x^2+ y^2+ z^2+ 2xy+ 2xz+ 2yz
Vậy...............
d, Xé vế trái ta có:
(x+y+x)^3=(x+y+z)(x+y+z)(x+y+z)(x+y+z)
=(x^2+y^2+z^2+2xy+2xz+2yz)(x+y+z)
=x^3+ xy^2+ xz^2+ 2x^2y+ 2xyz+ 2x^2z+ x^2y+ y^3+ yz^2+2xy^2+ 2y^2z+z^3+ 2xyz+ x^2z+ y^2z+2xyz+ 2yz^2+ 2xz^2
=x^3+ 3xy^2+ 6xy+ 3x^2y+3xz^2+ 3x^2z+ 3yz^2+ y^3z^3 (1)
Xét vế phải ta có:x^3+ y^3+ z^3+ 3(x+y)(x+y)(y+z)
=x^3+ y^3+ z^3+ 3(xy+ xz+ y^2+ yz)(z+x)
=x^3+ y^3+ z^3+ 3(xyz+ xz^2+ y^2z+ yz^2+ x^2y+ x^2z+ xy^2+xyz)
=x^2+ y^3+ z^3 +3(2xyz+ xz^2+ y^2z+ yz^2+x^2y+x^2z+ xy^2)
=x^3+ y^3+ z^3+6xyz+ 3xz^2+ 3y^2z+3yz^2+ 3x^2y+3x^2z+3xy^2(2)
Từ (1) và (2)=>.......
đề
Tìm x,y,z biết