Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Dùng Casio mà bấm :) (MODE => 5 => 2)
\(\Rightarrow\) \(\hept{\begin{cases}x=4\\y=2\\z=5\end{cases}}\)
Bài 3:
\(\text{Δ}=1^2-4\cdot2\cdot\left(-4m-2\right)\)
=1+8(4m-2)
=32m-16+1=32m-15
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>32m-15>0
hay m>15/32
Để phương trình vô nghiệm thì 32m-15<0
hay m<15/32
Để phương trình có nghiệm kép thì 32m-15=0
hay m=15/32
Câu 32:
Gọi M là giao điểm d1;d2 thì tọa độ M là nghiệm của hệ:
\(\left\{{}\begin{matrix}3x-5y+2=0\\5x-2y+4=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{16}{19};-\frac{2}{19}\right)\)
Do d song song d3 nên d nhận \(\left(2;-1\right)\) là 1 vtpt
Phương trình d:
\(2\left(x+\frac{16}{19}\right)-1\left(y+\frac{2}{19}\right)=0\Leftrightarrow2x-y+\frac{30}{19}=0\)
Câu 33:
\(\overrightarrow{BC}=\left(1;-2\right)\)
Do AH vuông góc BC nên AH nhận \(\left(1;-2\right)\) là 1 vtpt
Phương trình AH:
\(1\left(x+1\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+5=0\)
Câu 34:
Tọa độ M là: \(M\left(\frac{3}{2};4\right)\)
\(\overrightarrow{CM}=\left(-\frac{3}{2};6\right)=-\frac{3}{2}\left(1;-4\right)\)
Phương trình tham số CM: \(\left\{{}\begin{matrix}x=3+t\\y=-2-4t\end{matrix}\right.\)
Câu 30:
\(\overrightarrow{AB}=\left(-2;0\right)=-2\left(1;0\right)\) nên đường thẳng AB nhận \(\left(1;0\right)\) là 1 vtcp
Phương trình AB: \(\left\{{}\begin{matrix}x=1+t\\y=-7\end{matrix}\right.\)
Cả 4 đáp án đều ko chính xác
Câu 31:
Gọi M là trung điểm AB \(\Rightarrow M\left(-1;1\right)\)
\(\overrightarrow{AB}=\left(-6;-4\right)=-2\left(3;2\right)\Rightarrow\) đường trung trực AB nhận \(\left(3;2\right)\) là 1vtpt
Phương trình:
\(3\left(x+1\right)+2\left(y-1\right)=0\Leftrightarrow3x+2y+1=0\)
VTPT: vecto pháp tuyến
a) ✽ pt AB:
ta có \(\overrightarrow{AB}\)= (-1;-5) nên VTPT của AB là: (5;-1). Mà A(2;3) ϵ AB
nên pt AB: 5(x-2) -1.(y-3)=0 ⇔ 5x - y -7=0
✽ pt BC:
Ta có \(\overrightarrow{BC}\)= (3;6) nên VTPT của BC là : (6;-3). Mà B(1;-2) ϵ BC
nên pt BC: 6(x-1) -3(y+2)=0 ⇔ 2x -y -4=0
✽ pt AC:
ta có \(\overrightarrow{AC}=\left(2;1\right)\)nên VTPT của AC là (-1;2). Mà A(2;3) ϵ AC
nên pt AC: - (x-2) +2(y-3)=0 ⇔ -x +2y -4=0
b)pt AH:
AH có VTPT là \(\overrightarrow{BC}\)= (3;6) và qua A(2;3) nên ptAH: 3(x-2)+6(y-3)=0
⇔ x +2y -4=0
Tọa độ H là nghiệm của hệ pt \(\left\{{}\begin{matrix}\text{2x -y -4=0}\\x+2y-4=0\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=\frac{12}{5}\\y=\frac{4}{5}\end{matrix}\right.\)
H(\(\frac{12}{5}\);\(\frac{4}{5}\)) ⇒ AH = \(\sqrt{\left(\frac{12}{5}-2\right)^2+\left(\frac{4}{5}-3\right)^2}\)=\(\sqrt{5}\)
BC = \(\sqrt{3^2+6^2}\)=\(3\sqrt{5}\)
SABC= 0,5.\(\sqrt{5}\).\(3\sqrt{5}\)=7,5 (đvdt)
c) Tọa độ giao điểm là nghiệm của hệ pt: \(\left\{{}\begin{matrix}\text{-x +2y -4=0}\\x+y+1=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)
d) cách 1: ta có d' // AB nên d': 5x - y + c=0 (c≠-7)
mà B(1;-2) ϵ d' nên 5 + 2 +c =0 ⇔ c = -7 (loại)
Vậy không có pt đường thẳng nào đi qua B và // với AB
cách 2 (dùng tiên đề Ơ-clit)
ta có B ϵ d', B ϵ AB mà d' // AB nên d' \(\equiv\) AB
( qua 1 điểm nằm ngoài một đường thẳng, có 1 và chỉ 1 đường thẳng song song với đường thẳng đã cho)
điều này mâu thuẫn với đề bài (d'//AB) do đó không có pt d'
Phương trình hoành độ giao điểm:
\(x^2+2x-m+1=x+1\)
\(\Leftrightarrow x^2+x-m=0\left(1\right)\)
\(\left(d\right),\left(P\right)\) cắt nhau tại hai điểm phân biệt khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt
\(\Leftrightarrow\Delta=4m+1>0\Leftrightarrow m>-\dfrac{1}{4}\)
Phương trình \(\left(1\right)\) có hai nghiệm phân biệt \(x=\dfrac{-1\pm\sqrt{4m+1}}{2}\)
\(x=\dfrac{-1+\sqrt{4m+1}}{2}\Rightarrow y=\dfrac{1+\sqrt{4m+1}}{2}\Rightarrow A\left(\dfrac{-1+\sqrt{4m+1}}{2};\dfrac{1+\sqrt{4m+1}}{2}\right)\)
\(x=\dfrac{-1-\sqrt{4m+1}}{2}\Rightarrow y=\dfrac{1-\sqrt{4m+1}}{2}\Rightarrow B\left(\dfrac{-1-\sqrt{4m+1}}{2};\dfrac{1-\sqrt{4m+1}}{2}\right)\)
\(AB=8\Leftrightarrow\sqrt{8m+2}=8\Leftrightarrow m=\dfrac{31}{4}\left(tm\right)\)
2.
a, \(AB=2\sqrt{5},BC=5\sqrt{10},CA=\sqrt{170}\)
\(AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}=\dfrac{65}{2}\Rightarrow AM=\dfrac{\sqrt{130}}{2}\)
b, \(\left\{{}\begin{matrix}x_D-4-2\left(x_D-2\right)+4\left(x_D+3\right)=0\\y_D-3-2\left(y_D-7\right)+4\left(y_D+8\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D=-4\\y_D=-\dfrac{14}{3}\end{matrix}\right.\)
\(\Rightarrow D\left(-4;-\dfrac{14}{3}\right)\)
c, \(\left\{{}\begin{matrix}\overrightarrow{AA'}=\left(x_{A'}-4;y_{A'}-3\right)\\\overrightarrow{BC}=\left(-5;-15\right)\\\overrightarrow{BA'}=\left(x_{A'}-2;y_{A'}-7\right)\end{matrix}\right.\)
\(AA'\perp BC\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AA'}.\overrightarrow{BC}=0\left(1\right)\\\overrightarrow{BA'}=k\overrightarrow{BC}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-5\left(x_{A'}-4\right)-15\left(y_{A'}-3\right)=0\Leftrightarrow x_{A'}+3y_{A'}=13\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x_{A'}-2=-5k\\y_{A'}-7=-15k\end{matrix}\right.\Leftrightarrow3x_{A'}-y_{A'}=-1\)
\(\left\{{}\begin{matrix}x_{A'}+3y_{A'}=13\\3x_{A'}-y_{A'}=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_{A'}=1\\y_{A'}=4\end{matrix}\right.\Rightarrow A'\left(1;4\right)\)
dài dữ
b1 : x =4 , y= 2 , z=5
b2 : ta có : \(\overrightarrow{AB}=\left(-4;1\right)\); \(\overrightarrow{AC}=\left(2m;m-5\right)\)
ĐỂ A,B,C thẳng hàng
<=> \(\dfrac{2m}{-4}=\dfrac{m-5}{1}\)
=> m =10/3
b3: \(\overrightarrow{AB}.\overrightarrow{AC}=\)AB .AC .cos 60\(^0\)=a.a .1/2 =\(\dfrac{a^2}{2}\)