K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\dfrac{2^{10}.3^8-2.3^9.2^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)

\(=\dfrac{2^{10}.\left(3^8-3^9\right)}{2^{10}.3^8.\left(1+5\right)}=\dfrac{3^8-3^9}{3^8.6}=\dfrac{3^8.\left(1-3\right)}{3^8.6}=\dfrac{-2}{6}=-\dfrac{1}{3}\)

~ Học tốt ~

18 tháng 7 2017

Bài 1:

1) \(3^2.\dfrac{1}{243}.81^2.\dfrac{1}{3^3}\)

\(=3^2.\left(\dfrac{1}{3}\right)^5.\left(3^4\right)^2.\dfrac{1}{3^3}\)

\(=3^2.\dfrac{1}{3^5}.3^8.\dfrac{1}{3^3}\)

\(=3^2=9\)

2) \(\left(4.2^5\right):\left(2^3.\dfrac{1}{16}\right)\)

\(=\left(2^2.2^5\right):[2^3.\left(\dfrac{1}{2}\right)^4]\)

\(=2^7:2^3:\dfrac{1}{2^4}\)

\(=2^4.2^4=256\)

3)\(\left(2^{-1}+3^{-1}\right)+\left(2^{-1}.2^0\right):2^3\)

\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2}.1:2^3\)

\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2^4}\)

\(=\dfrac{43}{48}\)

4)\(\left(-\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)

\(=-3-1+\dfrac{1}{4}.\dfrac{1}{2}\)

\(=-3-1+\dfrac{1}{8}\)

\(=-4+\dfrac{1}{8}\\ \)

\(=-\dfrac{31}{8}\)

5)\([\left(0,1\right)^2]^0+[\left(\dfrac{1}{7}\right)^{-1}]^2.\dfrac{1}{49}.[\left(2^2\right)^3:2^5]\\ =1+7^2.\dfrac{1}{7^2}.2^6:2^5\\ =1+1.2\\ =3\)

Chúc bạn học tốt haha

1: \(=5^{20}\cdot\left(\dfrac{1}{5}\right)^{20}+\left(\dfrac{-3}{4}\cdot\dfrac{-4}{3}\right)^8-1\)

=1+1-1=1

2: \(=\dfrac{15-8}{6}\cdot\dfrac{6}{7}+\left(-\dfrac{3}{2}\right)^2\)

=1+9/4

=13/4

3: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{3^8\cdot2^{10}+2^{10}\cdot3^8\cdot5}\)

\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{3^8\cdot2^{10}\cdot6}=\dfrac{-2}{6}=\dfrac{-1}{3}\)

20 tháng 8 2017

1.Tính

a.\(\dfrac{7}{23}\left[(-\dfrac{8}{6})-\dfrac{45}{18}\right]=\dfrac{7}{23}.-\dfrac{12}{6}=-\dfrac{7}{6}\)

b.\(\dfrac{1}{5}\div\dfrac{1}{10}-\dfrac{1}{3}(\dfrac{6}{5}-\dfrac{9}{4})=2-(-\dfrac{7}{20})=\dfrac{47}{20}\)

c.\(\dfrac{3}{5}.(-\dfrac{8}{3})-\dfrac{3}{5}\div(-6)=-\dfrac{3}{2}\)

d.\(\dfrac{1}{2}.(\dfrac{4}{3}+\dfrac{2}{5})-\dfrac{3}{4}.(\dfrac{8}{9}+\dfrac{16}{3})=-\dfrac{19}{5}\)

e.\(\dfrac{6}{7}\div(\dfrac{3}{26}-\dfrac{3}{13})+\dfrac{6}{7}.(\dfrac{1}{10}-\dfrac{8}{5})=-\dfrac{61}{7}\)

Bài 2

a.\(1^2_5x+\dfrac{3}{7}=\dfrac{4}{5}\)

\(x=\dfrac{13}{49}\)

b.\(\left|x-1,5\right|=2\)

Xảy ra 2 trường hợp

TH1

\(x-1,5=2\)

\(x=3,5\)

TH2

\(x-1,5=-2\)

\(x=-0,5\)

Vậy \(x=3,5\) hoặc \(x=-0,5\) .

Ngại làm quá trời ơi,lần sau bn tách ra nhá làm vậy mỏi tay quá.

20 tháng 8 2017

Ths bn nhé

20 tháng 8 2017

bấm máy tính là ra mak

21 tháng 8 2017

Bạn tính hai vế à.!? Hay tính vế thứ nhất rồi với vế thứ 2.!???

a: \(A=\dfrac{3^6\cdot3^8\cdot5^4-3^{13}\cdot5^{13}\cdot5^{-9}}{3^{12}\cdot5^6+5^6\cdot3^{12}}\)

\(=\dfrac{3^{14}\cdot5^4-3^{13}\cdot5^4}{2\cdot3^{12}\cdot5^6}\)

\(=\dfrac{3^{13}\cdot5^4\cdot\left(3-1\right)}{2\cdot3^{12}\cdot5^6}=\dfrac{3}{5^2}=\dfrac{3}{25}\)

c: \(C=\dfrac{\dfrac{27}{64}+\dfrac{125}{64}-5\cdot\dfrac{16-15}{12}}{\dfrac{25}{64}+\dfrac{4}{9}-\dfrac{5}{6}}\)

\(=\dfrac{47}{24}:\dfrac{1}{576}=47\cdot24=1128\)

 

26 tháng 11 2022

a: \(=\dfrac{-3}{4}\left(31+\dfrac{11}{23}+8+\dfrac{12}{23}\right)=\dfrac{-3}{4}\cdot40=-30\)

b: \(=\left(\dfrac{7}{3}+\dfrac{7}{2}\right):\left(-\dfrac{25}{6}+\dfrac{22}{7}\right)+\dfrac{15}{2}\)

\(=\dfrac{35}{6}:\dfrac{-175+132}{42}+\dfrac{15}{2}\)

\(=\dfrac{35}{6}\cdot\dfrac{42}{-43}+\dfrac{15}{2}\)

\(=\dfrac{35\cdot7}{-43}+\dfrac{15}{2}\)

\(=\dfrac{-70\cdot7+15\cdot43}{86}=\dfrac{155}{86}\)

c: \(=\dfrac{-7}{5}\left(4+\dfrac{5}{9}+5+\dfrac{4}{9}\right)=\dfrac{-7}{5}\cdot10=-14\)

d: \(=4+\dfrac{25}{16}+25\cdot\left(\dfrac{9}{16}\cdot\dfrac{64}{125}\cdot\dfrac{-8}{27}\right)\)

\(=\dfrac{89}{16}+25\cdot\dfrac{-32}{375}\)

\(=\dfrac{89}{16}-\dfrac{32}{15}=\dfrac{823}{240}\)

e: \(=\dfrac{2}{3}-4\cdot\left(\dfrac{2}{4}+\dfrac{3}{4}\right)=\dfrac{2}{3}-5=-\dfrac{13}{3}\)

16 tháng 9 2017

\(B=0,25+3,5-\left(\dfrac{1}{8}-\dfrac{2}{5}+1\dfrac{1}{4}\right)\)

\(=\dfrac{17}{20}-\left(\dfrac{39}{40}\right)\)

\(=\dfrac{-1}{8}\)

\(C=\dfrac{2}{3}-\left(\dfrac{-1}{4}\right)+\dfrac{3}{5}-\dfrac{7}{45}-\left(\dfrac{-5}{9}\right)+\dfrac{1}{12}+\dfrac{1}{35}\)

\(=\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{3}{5}-\dfrac{7}{45}+\dfrac{5}{9}+\dfrac{1}{12}+\dfrac{1}{35}\)

\(=\dfrac{71}{35}\)

\(D=\left(5-\dfrac{3}{4}+\dfrac{1}{5}\right)-\left(6+\dfrac{7}{4}-\dfrac{8}{5}\right)-\left(2-\dfrac{5}{7}+\dfrac{16}{5}\right)\)

\(=5-\dfrac{3}{4}+\dfrac{1}{5}-6-\dfrac{7}{4}+\dfrac{8}{5}-2+\dfrac{5}{7}-\dfrac{16}{5}\)

\(=\left(5-6-2\right)+\left(\dfrac{-3}{4}-\dfrac{7}{4}\right)+\left(\dfrac{1}{5}+\dfrac{8}{5}-\dfrac{16}{5}\right)+\dfrac{5}{7}\)

\(=\left(-3\right)+\left(\dfrac{-5}{2}\right)+\left(\dfrac{-7}{5}\right)+\dfrac{5}{7}\)

\(=\dfrac{-433}{70}\)

17 tháng 9 2017

bạn ơi mk thấy đây đâu có j là hợp lí đâu

27 tháng 11 2022

b: =>(3x-1)(3x+1)(2x+3)=0

hay \(x\in\left\{\dfrac{1}{3};-\dfrac{1}{3};-\dfrac{3}{2}\right\}\)

c: \(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|=\dfrac{5}{6}+\dfrac{3}{4}=\dfrac{19}{12}\)

=>2x-1/3=19/12 hoặc 2x-1/3=-19/12

=>2x=23/12 hoặc 2x=-15/12=-5/4

=>x=23/24 hoặc x=-5/8

d: \(\Leftrightarrow-\dfrac{5}{6}\cdot x+\dfrac{3}{4}=-\dfrac{3}{4}\)

=>-5/6x=-3/2

=>x=3/2:5/6=3/2*6/5=18/10=9/5

e: =>2/5x-1/2=3/4 hoặc 2/5x-1/2=-3/4

=>2/5x=5/4 hoặc 2/5x=-1/4

=>x=5/4:2/5=25/8 hoặc x=-1/4:2/5=-1/4*5/2=-5/8

f: =>14x-21=9x+6

=>5x=27

=>x=27/5

h: =>(2/3)^2x+1=(2/3)^27

=>2x+1=27

=>x=13

i: =>5^3x*(2+5^2)=3375

=>5^3x=125

=>3x=3

=>x=1

tính a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\) b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\) c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\) d)...
Đọc tiếp

tính

a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\)

b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\)

c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)

d) \(\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{3}\)

e) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2\div2\)

f) \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

g) \(\dfrac{1}{-\left(2017\right)\left(-2015\right)}+\dfrac{1}{\left(-2015\right)\left(-2013\right)}+...+\dfrac{1}{\left(-3\right)\cdot\left(-1\right)}\)

h) \(\left(1-\dfrac{1}{1\cdot2}\right)+\left(1-\dfrac{1}{2\cdot3}+...+\left(1-\dfrac{1}{2017\cdot2018}\right)\right)\)

3
7 tháng 10 2017

c)

Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)

\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)

7 tháng 10 2017

d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)

\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)

\(=3-1+\dfrac{1}{4}:2\)

\(=3-1+\dfrac{1}{8}\)

\(=\dfrac{17}{8}\)

a: \(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)

\(=\left(6-5-3\right)+\left(-\dfrac{2}{3}-\dfrac{5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)

\(=-2-\dfrac{1}{2}=-\dfrac{5}{2}\)

b: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}=\dfrac{2^{10}\cdot3^8\cdot\left(-2\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)