Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
HB/HC=1/4 nên HC=4HB
Ta có: \(AH^2=HB\cdot HC\)
=>\(4HB^2=196\)
=>HB=7(cm)
=>HC=28cm
BC=7+28=35cm
\(AB=\sqrt{7\cdot35}=7\sqrt{5}\left(cm\right)\)
\(AC=\sqrt{28\cdot35}=14\sqrt{5}\left(cm\right)\)
\(C=7\sqrt{5}+14\sqrt{5}+35=21\sqrt{5}+35\left(cm\right)\)
HB/HC=1/4
nen HC=4HB
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
\(\Leftrightarrow4HB^2=14^2=196\)
=>HB=7(cm)
=>HC=28(cm)
BC=BH+CH=35(cm)
\(AB=\sqrt{7\cdot35}=7\sqrt{5}\left(cm\right)\)
\(AC=\sqrt{28\cdot35}=14\sqrt{5}\left(cm\right)\)
\(C=AB+AC+BC=21\sqrt{5}+35\left(cm\right)\)
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\)
=> \(HC=4HB\)
Đặt HC = x ta có: => HB = 4x
\(AH^2=HB.HC\)
hay \(14^2=4x.x\)
=> 196 = 4x2
=> x = 7
=> HB = 4x = 4.7 = 28
Ta có: BC = HB + HC = 7 + 28 = 35
Xét \(\Delta AHC\) vuông tại H ta có:
\(AH^2+HC^2=AC^2\)
=> AC = \(7\sqrt{5}\) cm
Xét \(\Delta AHB\) vuông tại H ta có:
\(AB^2=AH^2+BH^2=14^2+28^2=980\)
=> AB = \(14\sqrt{5}cm\)
Chu vi tam giác ABC:
AB +AC+BC= \(14\sqrt{5}+7\sqrt{5}+35=35+21\sqrt{5}\)
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH. a) Biết AH = 6cm, BH = 4,5cm.Tính AB, AC, BC,HC. b) Biết AB = 6cm, BH = 3cm.Tính AH và tính chu vi của các tam giác vuông trong hình.
Bài 1:
\(HC=\dfrac{AH^2}{HB}=\dfrac{36}{4.5}=8\left(cm\right)\)
BC=BH+CH=12,5cm
\(AB=\sqrt{4.5\cdot12.5}=7.5\left(cm\right)\)
\(AC=\sqrt{8\cdot12.5}=10\left(cm\right)\)
1) ta có \(\dfrac{HB}{HC}=\dfrac{1}{4}\Leftrightarrow HC=4HB\)
*Xét tam giác ABC có AH vuông vs BC
=> \(AH^2=HC.HB\) (hệ thức trong tam giác vuông)
<=> \(14^2=4HB.HB\)
<=> \(196=4HB^2\)
<=> \(HB=7\left(cm\right)\)
=> HC= 4.7 =28 (cm)
* BC=HC+HB =28+7=35 (cm)
* Xét tam giác ABC có AH vuông vs BC
\(AB^2=BC.HB\) (HỆ THỨC TRONG TAM GIÁC VUÔNG)
<=> \(AB^2=35.7\)
<=>\(AB^2=245\)
<=> AB=15,65(cm)
\(AC^2=BC.HC\) (hệ thức trong tam giác vuông )
<=> \(AC^2=35.28\)
<=>AC= 31,3(cm)
* Chu vi tam giác ABC là
AC+AB+BC=31.3+15,65+35=81,85(cm)
Vậy chu vi tam giác ABC là 81,85 cm
kết quả phải là 81,95 chứ bạn