Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2x^2 + 5x = 0
=> x(2x + 5) = 0
=> x = 0 hoặc 2x + 5 = 0
=> x = 0 hoặc x = -5/2
b. x^2 - 1 = 0
=> (x - 1)(x + 1) = 0
=> x - 1 = 0 hoặc x + 1 = 0
=> x = 1 hoặc x - -1
1. Cho đa thức f (x) thỏa mãn ( x\(^2\) - 4x + 3) .f ( x + 1 ) = (x - 2).f ( x - 1 ). Chứng tỏ đa thức f (x) có ít nhất 3 nghiệm.
\(\left(x^2-4x+3\right).f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\)
\(\text{* Thay}\)\(x=2\)\(,\)\(\text{ta có:}\)
\(\left(2^2-4.2+3\right)f\left(2+1\right)=\left(2-2\right)f\left(2-1\right)\)
\(\rightarrow\left(4-8+3\right)f\left(3\right)=0.f\left(1\right)\)
\(\rightarrow\left(-1\right).f\left(3\right)=0\)
\(\rightarrow f\left(3\right)=0\)
\(\rightarrow x=3\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)
\(\text{* Thay}\)\(x=1\)\(,\)\(\text{ta có:}\)
\(\left(1^2-4.1+3\right)f\left(1+1\right)=\left(1-2\right).f\left(1-1\right)\)
\(\rightarrow\left(1-4+3\right).f\left(2\right)=-1.f\left(0\right)\)
\(\rightarrow0.f\left(2\right)=-1.f\left(0\right)\)
\(\rightarrow0=\left(-1\right).f\left(0\right)\)
\(\rightarrow f\left(0\right)=0\)
\(\rightarrow x=0\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)
\(\text{* Thay}\)\(x=3\)\(,\)\(\text{ta có:}\)
\(\left(3^2-4.3+3\right).f\left(3+1\right)=\left(3-2\right).f\left(3-1\right)\)
\(\rightarrow\left(9-12+3\right).f\left(4\right)=1.f\left(2\right)\)
\(\rightarrow0.f\left(4\right)=1.f\left(2\right)\)
\(\rightarrow0=1.f\left(2\right)\)
\(\rightarrow f\left(2\right)=0\)
\(\rightarrow x=2\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)
\(\text{Vậy ...}\)
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
Bài 2:
Đặt H(x)=0
\(\Leftrightarrow x^3+3x^2+3x+1=0\)
\(\Leftrightarrow\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
Vậy: S={-1}