K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(M=\left(a+b\right)^2-2ab=S^2-2p\)

b: \(N=\left(a+b\right)^3-3ab\left(a+b\right)=S^3-3pS\)

c: \(Q=\left(a^2+b^2\right)^2-2a^2b^2=\left(S^2-2p\right)^2-2\cdot p^2\)

21 tháng 10 2017

Bài 1 

\(x^5+x^4+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^5+x^4+x^3\right)+\left(-x^3-x^2-x\right)+\left(x^2+x+1\right)\)

\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)

Bài 2

Ta có: \(\left(ax+b\right)\left(x^2+cx+1\right)=ax^3+bx^2+acx^2+bcx+ax+b\)

\(=ax^3+\left(b+ac\right)x^2+\left(bc+a\right)x+b=x^3-3x-2\)

\(\Rightarrow a=1\)

\(\Rightarrow b+ac=0\)

\(\Rightarrow bc+a=-3\)

\(\Rightarrow b=-2\)

Thay giá trị của \(a=1;b=-2\)vào \(b+ac=0\)ta được

\(\Leftrightarrow-2+c=0\Rightarrow c=2\)

   Vậy \(a=1;b=-2;c=2\)

Bài 3

Ta có \(\left(x^4-3x^3+2x^2-5x\right)\div\left(x^2-3x+1\right)=x^2+1\left(dư-2x+1\right)\)

\(\Rightarrow b=2x-1\)

Bài 4 (cũng làm tương tự như bài 3 nhé )

Bài 5(bài nãy dễ nên bạn tự làm đi nhé)

Bài 6

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2=0\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)\(\Rightarrow a-b=0\Rightarrow a=b\)

Bài 7 

\(a^2+b^2+c^2=ab+ac+bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Rightarrow a-b=0\Rightarrow a=b\)

\(\Rightarrow b-c=0\Rightarrow b=c\)

\(\Rightarrow a-c=0\Rightarrow a=c\)

   Vậy \(a=b=c\)

21 tháng 10 2017

I don't know

24 tháng 9 2020

Ta có x3 + y3

= (x + y)(x2 - xy + y2)

= (x + y)(x2 + 2xy + y2) - 3xy(x  + y)

= (x + y)3 - 6xy 

= 23 - 6xy

= 8 - 6xy

Lại có x + y = 2

=> (x + y)2 = 4

=> x2 + y2 + 2xy = 4

=> 2xy = -6

=> xy = -3

Khi đó x3 - y3 = 8 + 6.3 = 26

b) a + b = 7

=> a = 7 - b

Khi đó ab = 12

<=> (7 - b).b = 12

=> 7b - b2 = 12

=> 7b - b2 - 12 = 0

=> -(b2 - 7b + 12) = 0

=> b2 - 4b - 3b + 12 = 0

=> b(b - 4) - 3(b - 4) = 0

=> (b - 3)(b - 4) = 0

=> \(\orbr{\begin{cases}b=3\\b=4\end{cases}}\)

Khi b = 3 => a = 4

Khi b = 4 => a = 3

+) b = 3 ; a = 4 => B = (3 - 4)2009 = -1

+) b = 4 ; a = 3 => B = (4 - 3)2009 = 1

c) Ta có a3 - b3 = (a - b)(a2 + ab + b2)

                         = (a - b)(a2 - 2ab + b2) + 3ab(a - b)

                         = (a - b)3 + 3ab(a - b)

                          = 27 + 9ab

Lại có \(\hept{\begin{cases}a+b=9\\a-b=3\end{cases}}\Rightarrow\hept{\begin{cases}a=6\\b=3\end{cases}}\)

Khi đó C = 27 + 9.6.3 = 27 + 162 = 189

25 tháng 10 2017

a) (a + b)4

= [(a + b)2]2

= (a2 + 2ab + b2)2

= [(a2 + 2ab) + b2]2

= (a2 + 2ab)2 + 2(a2 + 2ab)b2 + b4

= a4 + 4a3b + 4a2b2 + 2a2b2 + 4ab3 + b4

= a4 + 4a3b + 6a2b2 + 4ab3 + b4

vậy (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

con a bn chép sai đề bài nên mk sử rồi nhé

b) (a + b)5

= (a + b)2 . (a + b)3

= (a2 + 2ab + b2)(a3 + 3a2b + 3ab2 + b3)

= a5 + 3a4b + 3a3b2 + a2b3 + 2a4b + 6a3b2 + 6a2b3 + 2ab4 + a3b2 + 3a2b3 + 3ab4 + b5

= a5 + (3a4b + 2a4b) + (3a3b2 + 6a3b2+ a3b2) + (a2b3 + 6a2b3 + 3a2b3) + (2ab4 3ab4) + b5

= a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

25 tháng 10 2017

hình như sai đề câu a

13 tháng 7 2016

Bài 1:

a) \(\left(a+b\right)^2-\left(a-b\right)^2\)

\(=\left(a+b+\left(a-b\right)\right).\left(a+b-\left(a-b\right)\right)\)

\(=2a.2b\)

\(=4ab\)

13 tháng 7 2016

Câu 1:

a) (a +b )2 - ( a -b )2

=a2+b2-a2+b2

=2b2

 b) (a + b )3- ( a - b )3 - 2b3

=a3+b3-a+b3-2b3

=a3-a

c) ( x+y+z)2 - 2(x+y+z)(x+y) + (x + y )2

=x2+xy+xz+xy+y2+yz+xz+yz+z2-2.(x2+xy+xz+xy+y2+yz)+x2+xy+xy+y2

=x2+y2+z2+2xy+2xz+2yz-2x2-2y2-4xy-2xz-2yz+x2+2xy+y2

=0

AH
Akai Haruma
Giáo viên
30 tháng 10 2019

Bài 1:

\(x^2+y^2-2x-4y+5=0\)

\(\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)=0\)

\(\Leftrightarrow (x-1)^2+(y-2)^2=0\)

Vì $(x-1)^2; (y-2)^2\geq 0$ với mọi $x,y\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì $(x-1)^2=(y-2)^2=0$

$\Rightarrow x=1; y=2$

Vậy...........

AH
Akai Haruma
Giáo viên
30 tháng 10 2019

Bài 2:

Ta có:

\(a(a-b)+b(b-c)+c(c-a)=0\)

\(\Leftrightarrow 2a(a-b)+2b(b-c)+2c(c-a)=0\)

\(\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)

Lập luận tương tự bài 1, ta suy ra :

\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)

Khi đó, thay $b=c=a$ ta có:

\(P=a^3+b^3+c^3-3abc+3ab-3c+5\)

\(=3a^3-3a^3+3a^2-3a+5=3a^2-3a+5\)

\(=3(a^2-a+\frac{1}{4})+\frac{17}{4}=3(a-\frac{1}{2})^2+\frac{17}{4}\geq \frac{17}{4}\)

Vậy $P_{\min}=\frac{17}{4}$

Giá trị này đạt được tại $b=c=a=\frac{1}{2}$

24 tháng 9 2020

Bài 1.

A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1

B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25

C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )

                                                                                  = -1( 25 + 12 ) + 3.(-12).(-1)

                                                                                  = -37 + 36

                                                                                  = -1

D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37

24 tháng 9 2020

Bài 2.

M = 3( x2 + y2 ) - 2( x3 + y3 )

= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )

= 3( x2 + y2 ) - 2( x2 - xy + y2 )

= 3x2 + 3y2 - 2x2 + 2xy - 2y2

= x2 + 2xy + y2

= ( x + y )2 = 12 = 1

7 tháng 9 2016

a/ \(x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1\)

b/ \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3a\left(xy\right)=a^3-\frac{3a\left(a^2-b\right)}{2}=\frac{3ab}{2}-\frac{a^3}{2}\)

c/ Không rõ đề