Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=3+3^2+...+3^100.
3B=3.3+3^2.3+...+3^100.3
3B=3^2+3^3+...+3^101
3B-B=(3^2+3^3+...+3^101)-(3+3^2+...+3^100)
2B=3^101-3
Mà2B+3=3^n
Suy ra:3^101-3+3=3^n
3^n+3^101
Vậy n=101
Bài 1(b) làm tương tự,còn bài (a) thì bạn tự làm
Ta có : \(\left|3-x\right|=x-5\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=x-5\\x-3=5-x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-x=-5+3\\x+x=5+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}0x=-2\left(loại\right)\\2x=8\end{cases}}\)
=> x = 4
\(\left(x-1\right)\left(x+3\right)< 0\)
thì x-1 và x+3 khác dấu
\(th1\Leftrightarrow\orbr{\begin{cases}x-1< 0\\x+3>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 1\\x>-3\end{cases}\Leftrightarrow}-3< x< 1\left(tm\right)}\)
\(th2\Leftrightarrow\orbr{\begin{cases}x-1>0\\x+3< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}\Leftrightarrow}1< x< -3\left(vl\right)}\)
lúc nãy mk quên kl câu b nha thêm vào
\(\left(x+2\right)\left(5-x\right)>0\)
thì x+2 và 5-x cùng dấu
\(th1\Leftrightarrow\orbr{\begin{cases}x+2< 0\\5-x< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< -2\\x>5\end{cases}\Leftrightarrow}5< x< -2\left(vl\right)}\)
\(th2\Leftrightarrow\orbr{\begin{cases}x+2>0\\5-x>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>-2\\x< 5\end{cases}\Leftrightarrow}-2< x< 5\left(tm\right)}\)
với -2<x<5 thì
\(x\in\left\{-1;0;1;2;3;4\right\}\)
Bài 1 : Đặt a=36n;b=36n,ƯCLN(m;n)=1 với m,n thuộc Z
Ta có a+b=432 nên 36n+36m=432 => 36.(m+n)=432
m+n=432:36
m+n=12
=> ta xét từng số từ 1 ->11 .VD
m=1=>n=11=>ƯCLN =1(chọn)=>a=36,b=396
Nếu ƯCLN ko = 1 thì loại
a) \(A=3^1+3^2+3^3+...+3^{2010}\)
\(3A=3.\left(3^1+3^2+3^3+...+3^{2010}\right)\)
\(3A=3.3^1+3.3^2+3.3^3+...+3.3^{2010}\)
\(3A=3^2+3^3+3^4+...+3^{2011}\)
\(3A-A=2A\)
\(2A=\left(3^2+3^3+3^4+...+3^{2011}\right)-\left(3^1+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3^1=3^{2011}-3\)\(\Rightarrow\)\(A=\left(3^{2011}-3\right)\div2\)
b) Mình ko biết
\(A=3^1+3^2+3^3+...+3^{2010}\)
\(\Rightarrow3A=3^2+3^3+...+3^{2011}\)
\(\Rightarrow2A=3^{2011}-3\)
\(\Rightarrow A=\frac{3^{2011}-2}{2}\)
\(\Leftrightarrow2A+3=3^{2011}-3+3=2^{2011}\)
\(\Rightarrow x=2011\)