Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,f\left(0\right)=0^3-0.3+2=2\)
\(f\left(1\right)=1^3-3.1+2=0\)
\(f\left(-1\right)=-1+3+2=4\)
\(b,f\left(x\right)=x^3-3x+2\)
\(f\left(x\right)=x^3-x-2x+2\)
\(f\left(x\right)=x\left(x^2-1\right)-2\left(x-1\right)\)
\(f\left(x\right)=\left(x-1\right)\left(x^2+x-2\right)\)
Vậy f(x) = 0 \(\Rightarrow x=1\)
Vậy nghiệm của f(x) là : 1
\(c,h\left(x\right)=f\left(x\right)+x=0+1=1>0\)
\(f\left(x\right)-g\left(x\right)=5x^2-2x+5-\left(5x^2-6x-\frac{1}{3}\right)\)
= \(5x^2-2x+5-5x^2+6x+\frac{1}{3}\)
=\(4x+\frac{16}{3}\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...