Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
\(D=\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}}\)
\(=\frac{1}{\sqrt{h-1+2\sqrt{h-1}+1}}+\frac{1}{\sqrt{h-1-2\sqrt{h-1}+1}}\)
\(=\frac{1}{\sqrt{h-1}+1}+\frac{1}{\sqrt{h-1}-1}\)
\(=\frac{\sqrt{h-1}-1+\sqrt{h-1}+1}{h-1-1}\)
\(=\frac{2\sqrt{h-1}}{h-2}\)
Thay \(h=3\)vào D ta có:
\(D=\frac{2\sqrt{3-1}}{3-2}=2\sqrt{2}\)
Vậy với \(h=3\)thì \(D=2\sqrt{2}\)
2,
a, \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)(ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(TM\right)\)
Vậy PT có nghiệm là \(x=2\)
b, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)(ĐK: \(-\sqrt{2}\le x\le\sqrt{2}\))
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}=-3\)
\(\Leftrightarrow0=-3\)(vô lí)
Vậy PT đã cho vô nghiệm.
Bài 1:
a) \(\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{12}\)
\(=\frac{4}{\sqrt{5}-\sqrt{3}}-2\sqrt{3}\)
\(=\frac{4\sqrt{5}+4\sqrt{3}}{\sqrt{5^2}-\sqrt{3^2}}-2\sqrt{3}\)
\(=\frac{4\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-2\sqrt{3}\)
\(=\frac{4\left(\sqrt{5}+\sqrt{3}\right)}{2}-2\sqrt{3}\)
\(=2\left(\sqrt{5}+\sqrt{3}\right)-2\sqrt{3}\)
\(=2\sqrt{5}+2\sqrt{3}-2\sqrt{3}\)
\(=2\sqrt{5}\)
b) \(\sqrt{\frac{9}{8}}-\sqrt{\frac{49}{2}}+\sqrt{\frac{25}{18}}\)
\(=\frac{3}{2\sqrt{2}}-\frac{7}{\sqrt{2}}+\frac{5}{3\sqrt{2}}\)
\(=\frac{3\sqrt{2}}{2.2}-\frac{7}{\sqrt{2}}+\frac{5\sqrt{2}}{3.2}\)
\(=\frac{3\sqrt{2}}{4}-\frac{7}{\sqrt{2}}+\frac{5\sqrt{2}}{6}\)
\(=-\frac{23\sqrt{2}}{12}\)
chung ta den bai 2 :3
a) \(\frac{x}{\sqrt{x}-2}=-1\)
\(\Leftrightarrow x=-\sqrt{x}+2\)
\(\Leftrightarrow x-2=-\sqrt{x}\)
bình phương 2 vế ta được:
\(\Leftrightarrow x^2-4x+4=x\)
\(\Leftrightarrow x^2-4x+4-x=0\)
\(\Leftrightarrow x^2-5x+4=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)
b) \(\sqrt{x-2}=x-4\)
chúng ta lại bình phương hai vế như câu a và chúng ta được:
\(\Leftrightarrow x-2=x^2-8x+16\)
\(\Leftrightarrow x-2-x^2+8x-16=0\)
\(\Leftrightarrow9x-18-x^2=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=3\end{cases}}\)
Điều kiện xác định bạn tự tìm
a) \(\sqrt{x^2-4x+3}=x-2\Leftrightarrow\)\(\left(\sqrt{x^2-4x+3}\right)^2=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-4x+3=x^2-4x+4\Leftrightarrow0=1\) vô lý
pt vô nghiệm
b) \(\sqrt{x^2-1}-\left(x^2-1\right)=0\Leftrightarrow\sqrt{x^2-1}\left(1-\sqrt{x^2-1}\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-1}=0\\1-\sqrt{x^2-1}=0\end{cases}}\)
<=>\(\orbr{\begin{cases}\\\end{cases}}\begin{matrix}x=\pm1\\x=\pm\sqrt{2}\end{matrix}\)
c)\(\sqrt{x^2-4}-\left(x-2\right)=0\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\left(x-2\right)=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x-2}\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-\sqrt{x-2}=0\end{cases}}\)
<=>x=2 còn cái kia vô nghiệm
bạn tự trình bày chi tiết nhé
Bài 3 nhé bạn đặt cái căn đầu là a ,căn sau là b
a+b=x
ab=1
Rồi tính lần lượt a3 +b3 bằng ẩn x hết
và mũ 4 cũng vậy rồi lấy 2 số nhân nhau .Bđ là ra
6/ Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{2-x}=b\end{cases}}\)
\(\Rightarrow b^4+a^4=2\)
Từ đó ta có: a + b = 2
Ta có: \(a^4+b^2\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}=\frac{16}{8}=2\)
Dấu = xảy ra khi a = b = 1
=> x = 1