K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
16 tháng 10 2023

\(a,5x^2-10xz+xy-2yz\\ =5x\left(x-2z\right)+y\left(x-2z\right)\\ =\left(5x+y\right)\left(x-2z\right)\\ b,9x^2-3x-y^2+y\\ =\left(3x-y\right)\left(3x+y\right)-\left(3x-y\right)\\ =\left(3x-y\right)\left(3x+y-1\right)\\ c,y^2-z^2+12z-36\\ =y^2-\left(z-6\right)^2\\ =\left(y-z+6\right)\left(y+z-6\right)\\ d,2y^2-8z^2+\left(y-2z\right)^3\\ =2\left(y-2z\right)\left(y+2z\right)+\left(y-2z\right)^3\\ =\left(y-2z\right)\left(y^2-4yz+4z^2+2y+4z\right)\)

16 tháng 10 2023

cứu giúp 

Đề bài là gì sao không ghi rõ?? 

a) Ta có: \(VT=\left(x-y-z\right)^2\)

\(=\left(x-y-z\right)\left(x-y-z\right)\)

\(=x^2-xy-xz-yx+y^2+yz-zx+zy+z^2\)

\(=x^2+y^2+z^2-2xy+2yz-2xz\)

=VP(đpcm)

b) Ta có: \(VT=\left(x+y-z\right)^2\)

\(=\left(x+y-z\right)\left(x+y-z\right)\)

\(=x^2+xy-xz+yx+y^2-yz-zx-zy+z^2\)

\(=x^2+y^2+z^2+2xy-2yz-2zx\)

=VP(đpcm)

c) Sửa đề: Chứng minh \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)

Ta có: \(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

=VP(đpcm)

d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5\)

=VP(đpcm)

20 tháng 7 2020

a, b, nhân vào là ra à

c, nghe cứ là lạ

d, cũng nhân là ra hà

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5\)

25 tháng 10 2017

a, 3x + 3

=3(x+1)

b, 5x2 - 5

=5(x2-1)

=5(x-1)(x+1)

c, 2a2 - 4a +2

=2a2-2a-2a+2

=(2a2-2a)-(2a-2)

=2a(a-1)-2(a-1)

=(a-1)(2a-2)

=(a-1)(a-1)2

=2(a-1)2

d)5.(x-y)-y(x-y)

=(x-y)(5-y)

e) y.(x-z)+7(z-x)

=y.(x-z)-7(x-z)

=(x-z)(y-7)

19 tháng 7 2018

a) 5xy ( x - y ) - 2x + 2y

= 5xy ( x - y ) - 2 ( x - y )

= ( x - y ) ( 5xy - 2 )

b) 6x-2y-x(y-3x)

= 2 ( y - 3x ) - x ( y - 3x )

= ( y - 3x ( ( 2 - x )

c)  x+ 4x - xy-4y

= x ( x + 4 ) - y ( x + 4 )

( x + 4 ) ( x - y )

d) 3xy + 2z - 6y - xz 

= ( 3xy - 6y ) + ( 2z - xz )

= 3y ( x - 2 ) + z ( x - 2 )

= ( x - 2 ) ( 3y + z )

19 tháng 7 2018

a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)

b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)

c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)

d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)

11)

a,4-9x^2=0

(2-3x)(2+3x)=0

2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3

b,x^2 +x+1/4=0

(x+1/2)^2 =0

x+1/2=0

x=-1/2

c,2x(x-3)+(x-3)=0

(x-3)(2x+1)=0

x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2

d,3x(x-4)-x+4=0

3x(x-4)-(x-4)=0

(x-4)(3x-1)=0

x-4=0=>x=4 hoặc 3x-1=0=>x=1/3

e,x^3-1/9x=0

x(x^2-1/9)=0

x(x+1/3)(x-1/3)=0

x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3

f,(3x-y)^2-(x-y)^2 =0

(3x-y-x+y)(3x-y+x-y)=0

2x(4x-2y)=0

4x(2x-y)=0

x=0hoặc 2x-y=0=>x=y/2

a: \(=x^2-2xy+y^2-\left(z^2-6zt+9t^2\right)\)

\(=\left(x-y\right)^2-\left(z-3t\right)^2\)

\(=\left(x-y-z+3t\right)\left(x-y+z-3t\right)\)

c: \(=\left(x^4-9\right)+3x\left(x^2-3\right)\)

\(=\left(x^2-3\right)\left(x^2+3\right)+3x\left(x^2-3\right)\)

\(=\left(x^2-3\right)\left(x^2+3x+3\right)\)

d: \(x^4+3x^3-9x-27\)

\(=x^3\left(x+3\right)-9\left(x+3\right)\)

\(=\left(x+3\right)\left(x^3-9\right)\)

19 tháng 7 2018

1, \(3x^2y^2-6x^2y^3+9x^2y^2\)

\(\Leftrightarrow12x^2y^2-6x^2y^2\)

\(\Leftrightarrow3x^2y^2\left(4+2y\right)\)

19 tháng 7 2018

5x^2y^3 - 25x^3y^4 + 10x^3y^3

\(\Leftrightarrow5x^2y^3\left(1-5xy+2x\right)\)