Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, 530 và 12410
Ta có : 530 = (53) 10 = 12510
Ta thấy 12510 lớn hơn 12410 nên 530 lớn hơn 12410
Xin lỗi bạn mình k làm đầy đủ đc ạ :
2) a) Vì (x-3)(2y+1) = 7
=> x-3 và 2y + 1 \(\in\)Ư(7) = { 1;7}
Ta có bảng :
x-3 | 1 | 7 |
x | 4 | 10 |
2y+1 | 7 | 1 |
y | 3 | 0 |
Vậy...
b) (2x+1)(3y-2) = -55
=> 2x +1 và 3y - 2 \(\in\)Ư(-55) = { 1; 5 ; 11 ; 55}
Ta có bảng :
2x+1 | 1 | 55 | 5 | 11 | |||
x | 0 | 27 | 2 | 5 | |||
3y-2 | 55 | 1 | 11 | 5 | |||
y | 19 | 1 | ktm | ktm |
Sr kẻ bảng thừa cột :))
Vậy...
Bài làm
a ) \(A=\frac{9^{99}+1}{9^{100}+1}=\frac{9^{100}+1}{9^{100}+1}-\frac{9}{9^{100}+1}\)
= \(1-\frac{9}{9^{100}+1}\)
\(B=\frac{10^{98}-1}{10^{99}-1}=\frac{10^{99}-1}{10^{99}-1}-\frac{10}{10^{99}-1}\)
= \(1-\frac{10}{10^{99}-1}\)
Vì \(\frac{9}{9^{100}+1}>\frac{10}{10^{99}-1}\)
nên \(1-\frac{9}{9^{100}+1}< 1-\frac{10}{10^{99}-1}\)
\(\Rightarrow A< B\)
Bài làm
b ) \(A=\frac{5^{10}}{1+5+5^2+.....+5^9}=\frac{1+5+5^2+.....+5^9}{1+5+5^2+.....+5^9}+\frac{1+5+5^2+.....+5^8-5^9.4}{1+5+5^2+.....+5^9}\)
= \(1+\frac{1+5+5^2+.....+5^8+5^9.4}{1+5+5^2+.....+5^9}=1+5^9.3\)
\(B=\frac{6^{10}}{1+6+6^2+.....+6^9}=\frac{1+6+6^2+.....+6^9}{1+6+6^2+.....+6^9}+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}\)
= \(1+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}=1+6^9.4\)
Vì \(1+5^9.3< 1+6^9.4\)
nên A < B
\(10A=\frac{10\left(10^{29}+10^{10}\right)}{10^{30}+10^{10}}=\frac{10^{30}+10^{11}}{10^{30}+10^{10}}=1+\frac{10^{11}-10^{10}}{10^{30}+10^{10}}\)
\(10B=\frac{10\left(10^{30}+10^{10}\right)}{10^{31}+10^{10}}=\frac{10^{31}+10^{11}}{10^{31}+10^{10}}=1+\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(10^{30}+10^{10}< 10^{31}+10^{10}\Rightarrow\frac{10^{11}-10^{10}}{10^{30}+10^{10}}>\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(\Rightarrow10A=1+\frac{10^{11}-10^{10}}{10^{30}+10^{10}}>10B=1+\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(\Rightarrow A>B\)
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon
a/ \(3^{100}=\left(3^2\right)^{50}=9^{50}\)
\(2^{150}=\left(2^3\right)^{50}=8^{50}\)
\(9^{50}>8^{50}\Rightarrow3^{100}>2^{150}\)
b/ \(27^5=\left(3^3\right)^5=3^{15}\)
\(245^3>243^3=3^3.81^3=3^3.\left(3^4\right)^3=3^3.3^{12}=3^{15}\)
\(\Rightarrow245^3>27^5\)
c/ \(81^{75}=\left(3^4\right)^{75}=3^{300}\)
\(30^{100}=3^{100}.10^{100}>3^{100}.9^{100}=3^{100}.3^{200}=3^{300}\)
\(\Rightarrow30^{100}>81^{75}\)
a, 3^100=(3^2)^50=9^50
2^150=(2^3)^50=8^50
vi 9>8 nên 9^50 > 8^50 hay 3^100>2^150
\(\left(A\right)125^{80}và25^{118}\)
\(125^{80}=\left(5^3\right)^{80}=5^{3.80}=5^{240}\)
\(25^{118}=\left(5^2\right)^{118}=5^{2.118}=5^{236}\)
Vì \(5^{240}>5^{236}\)nên \(125^{80}>25^{118}\)
\(\left(B\right)4^{21}và64^7\)
\(4^{21}\)giữ nguyên
\(64^7=\left(4^3\right)^7=4^{3.7}=4^{21}\)
Vì \(4^{21}=4^{21}\)nên \(4^{21}=64^7\)
dễ mà bạn,mình chưa học mà mình biết rồi nè.
a, 2100 và 10249
10249 = (210)9 = 290
2100 > 290
Vậy 2100 > 290
b, 530 và 6.529
6.529 > 5.529 = 530
vậy 530 < 6.529
c, 298 và 949
(22)49 = 449 < 949
vậy: 298 < 949
d, 1030 và 2100
(103)10 = 100010
2100 = (210)10 = 102410
Vì 100010 < 102410
Nên 1030 < 2100