K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2016

mình biết đấy

 

2 tháng 2 2016

đề hơi sai chỉnh lại nha mọi ngừi Bài 17. Cho tam giác ABC (AB=AC) có góc ở đỉnh bằng 20 độ; cạnh đáy là a ; cạnh bên là b . Chứng minh rằng a3 + b3 = 3ab2 

2 tháng 2 2016

17)\(AH^2=\frac{3b^2}{4};\Delta BCD;AD=b-\frac{a^2}{b}\)

MÀ \(AD^2=AH^2+DH^2=b^2-ab+a^2\)

 

2 tháng 2 2016

con cau 15,18

2 tháng 9 2016

Bài 1:

Ta có:góc ABD=góc CBD

          góc ECB=góc AEC

Mà góc B = góc C

suy ra góc ABD = góc CBD = góc ECB=gócACE

Ta lại có:góc B = góc C

=> BEDC là hình thang cân=>BC//DE

=>BE=DCvà BD=CE

Mà tam giác ABC cân tại A=>AE=AD

Vì góc DBC= góc EDB(so le trong)

Mà ABD=DBC=>góc ABD= góc DBC=>tam giác EBD cân tai E

=>EB=EDmà EB=DC

=>ED=EB=DC.đpcm

Bài 2:

Ta có :

góc ACD=góc BDC

=>ABCD là HTC(định nghĩa hình thang cân)

 

 

3 tháng 8 2017

bạn LÊ PHI HÙNG cho mình hỏi đpcm là gì v

25 tháng 7 2016

+ Ta có

MN//BC => BMNC là hình thang (theo định nghĩa)

Ta m giác ABC cân tại A => ^ABC = ^ACB

=> BMNC là hình thang cân

+ Xét tam giác MBI có

^MIB = ^IBC (góc so le trong) (1)

^IBC = ^IBM (BI là phân giác ^B) (2)

Từ (1) và (2) => tam giác MBI cân tại M => MI = MB (*)

+ Xét tam giác NCI chứng minh tương tự ta cũng có NI = NC (**)

Từ (*) và (**) => MI + NI = MB + NC => MN = MB + NC (dpcm)

3 tháng 9 2018

Bài 2:

kẻ hình thang ABCD

 
 

kẻ 2 đường cao AH và BK nối B với H

xét tam giác ABH và tam giác KBH

có ^ABH = ^KBH ( 2gocs so le trong )

HB chung

=> tam giác ABH = tam giác KBH (cạnh huyền +góc nhọn )

=> AB =HK ( 2 cạnh tương ứng )

xét tam giác BKC có BC>KC ( trong tam giác vuông cạnh huyền là cạnh lớn nhất )(1)

xét tam giác AHD có AD>HD (trong tam giác vuông cạnh huyền là cạnh lớn nhất)(2)

từ (1) và (2) => BC+AD >KC+HD

ta lại có DH+DK +HK =DC

mà AB=HK (C/m )

=> DH+DK+AB =dc

ta có DC-AB = DH+DK+AB-AB= DH+DK

mà DH+DK<BC+AD(c/m)

=>DC -AB< BC+AD

vậy tổng hai cạnh bên của hình thang lớn hơn hiệu hai đáy

a) Kẻ MN

Có: IM là tia p/g của góc AIB

=> AM:BM = AI:BI  (1)

IN là tia p/g của góc AIC

=> AN:NC = AI:IC (2)

Từ (1) và (2) => BI =CI

=> AM:MB = AN:NC

=> MN // BC ( Talet đảo )

mik cũng ko làm đc