\(\dfrac{3}{2}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

Bài 14:Tìm x

a,\(x-3=\left(3-x\right)^2\)

\(\Rightarrow\left(x-3\right)-\left(3-x\right)^2=0\)

\(\Rightarrow\left(x-3\right)+\left(x-3\right)^2=0\)

\(\Rightarrow\left(x-3\right)\left(1+x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

b,\(\left(2x-5\right)-\left(5+2x\right)^2=0\)

\(\Rightarrow\left(2x-5\right)+\left(2x-5\right)^2=0\)

\(\Rightarrow\left(2x-5\right)\left(1+2x-5\right)=0\)

\(\Rightarrow\left(2x-5\right)\left(2x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\2x-4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=5\\2x=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=2\end{matrix}\right.\)

18 tháng 8 2018

Bài 8:

b. 1+8x6y3 = 13+23(x2)3y3 = 13+(2x2y)3

= (1+2x2y)(1-2x2y+4x4y2)

e. 27x3+\(\dfrac{y^3}{8}\)\(=\left(3x\right)^3+\left(\dfrac{y}{2}\right)^3\)

= (3x+\(\dfrac{y}{2}\))(9x2-\(\dfrac{3xy}{2}\)+\(\dfrac{y^2}{4}\))

18 tháng 8 2018

Bài 9:

c. 1- 9x +27x2 -27x3 = 13-3.12.3x+3.(3x)2-(3x)3

= (1-3x)3

d. x3+\(\dfrac{3}{2}x^2\)+\(\dfrac{3}{4}x+\dfrac{1}{8}\) = x3+\(3x^2.\dfrac{1}{2}\)+\(3x.\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3\)

= (x+\(\dfrac{1}{2}\))3

f. x2 - 2xy +y2 -4m2 +4m.n - n2 = (x2 - 2xy +y2)-((2m)2 -2.2m.n + n2)

= (x-y)2-(2m-n)2 = (x-y-2m+n)(x-y+2m-n)

18 tháng 9 2017

a) 5x - 15y = 5(x - 3y)

b) \(\dfrac{3}{5}\)x2 + 5x4 - x2 - y

= \(\dfrac{3}{5}\)x2 + 5x2.x2 - x2 - y

= x2(\(\dfrac{3}{5}\) + 5x2 -1) - y

c) 14x2y2 - 21xy2 + 28x2y

= 7xy.xy - 7xy.3y + 7xy.4x

= 7xy(xy - 3y + 4x)

= 7xy[(xy - 3y) + 4x]

= 7xy[y(x - 3) +4x]

d) \(\dfrac{2}{7}x\)(3y - 1) - \(\dfrac{2}{7}y\)(3y - 1)

= (3y - 1).(\(\dfrac{2}{7}x\) - \(\dfrac{2}{7}y\) )

= (3y - 1).[\(\dfrac{2}{7}\)(x - y)]

e) x3 - 3x2 + 3x - 1

= x2.x - 3x.x + 3.x - 1

= x(x2-3x+3) - 1

g) 27x3 + \(\dfrac{1}{8}\)

= (3x)3 + \(\left(\dfrac{1}{2}\right)^3\)

= (3x + \(\dfrac{1}{2}\)).(9x2 - \(\dfrac{3}{2}\)x + \(\dfrac{1}{4}\))

h) (x+y)3 - (x-y)3

= 2(3x2y) + 2y3

f) (x+y)2 - 4x2

= -3x2 + y(2x + y)

24 tháng 9 2018

h,f ?????

giải rõ hơn nha

25 tháng 8 2018

Bài 1:

a) 25\(x^2\) - 0,09

= \(\left(5x\right)^2-0,3^2\)

= (5x - 0,3) (5x +0,3)

Bài 5: 

a: \(=\left(2x-3\right)^2\)

b: \(=\left(2x+1\right)^2\)

c: \(=\left(6x+1\right)^2\)

d: \(=\left(3x-4y\right)^2\)

e: \(=\left(\dfrac{1}{2}x-2y\right)^2\)

f: \(=-\left(x-5\right)^2\)

24 tháng 6 2017

a) Ta có : x2 - 4x + 3

= x2 - x - 3x + 3

= x(x - 1) - (3x - 3) 

= x(x - 1) - 3(x - 1)

= (x - 1) (x - 3) 

24 tháng 6 2017

a) \(x^2-4x+3\)

\(=x^2-x-3x+3\)

\(=x\left(x-1\right)-3\left(x-1\right)\)

\(=\left(x-1\right)\left(x-3\right)\)

b) \(x^2+5x+4\)

\(=x^2+x+4x+4\)

\(=x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x+4\right)\)

c) \(x^2-x-6\)

\(=x^2-3x+2x-6\)

\(=x\left(x-3\right)+2\left(x-3\right)\)

\(=\left(x+2\right)\left(x-3\right)\)

d) \(x^4+1997x^2+1996x+1997\)

\(=x^4+x^2+1996x^2+1996x+1996+1\)

\(=\left(x^4+x^2+1\right)+\left(1996x^2+1996x+1996\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+1996\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)

e) \(x^2-2001\cdot2002\)( hình như sai sai)

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

12 tháng 8 2021

7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)

8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)

9, ĐK x >= 0 

\(x-2\sqrt{x}-3=x-3\sqrt{x}+\sqrt{x}-3\)

\(=\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)

10, \(-4x^2-4x+10=-\left(4x^2+4x+1\right)+11\)

\(=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)

11;12 xem lại đề

13, \(-x^3+6xy^2-12xy^2+8y^3=-\left(x^3-6xy^2+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)

12 tháng 8 2021

Trả lời:

7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)

8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)

9, \(x-2\sqrt{x}-3\left(ĐK:x\ge0\right)\)

\(=x-3\sqrt{x}+\sqrt{x}-3=\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}-3\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)

10, \(10-4x-4x^2=-\left(4x^2+4x-10\right)=-\left(4x^2+4x+1-11\right)=-\left[\left(2x+1\right)^2-11\right]\)

\(=-\left(2x+1\right)^2+11=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)

11,sửa đề:  \(15x\left(x-3y\right)+20y\left(3y-x\right)=15x\left(x-3y\right)-20y\left(x-3y\right)=5\left(x-3y\right)\left(3x-4y\right)\)

12, \(25x^2-2=\left(5x-\sqrt{2}\right)\left(5x+\sqrt{2}\right)\)

13, sửa đề: \(-x^3+6x^2y-12xy^2+8y^3=-\left(x^3-6x^2y+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)

a) 3x2 - 7x + 2

= 3x2 - 6x - x + 2

= (3x2 - 6x) - (x - 2)

= 3x (x - 2) - (x - 2)

= (3x - 1) (x - 2)

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}