K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 16:

a: \(x=2\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

=>x=0 hoặc x=4

b: \(\Leftrightarrow\left(x-1\right)^2=\dfrac{9}{16}\)

=>x-1=3/4 hoặc x-1=-3/4

=>x=7/4 hoặc x=1/4

28 tháng 2 2018

Ta có: \(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)

Tương tự: \(\left(\sqrt{a+b}\right)^2=a+b\)

Nhận thấy: \(\left(\sqrt{a}+\sqrt{b}\right)^2>\left(\sqrt{a+b}\right)^2\)

Suy ra: \(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)

28 tháng 2 2018

nhầm chỗ \(\sqrt{b}b\) chuyển thành \(\sqrt{b}\)

14 tháng 7 2016

Bài 1 :

a. \(\left|x-\frac{1}{3}\right|< \frac{5}{2}\)

TH1 : nếu \(\left|x-\frac{1}{3}\right|>0\)

\(x-\frac{1}{3}< \frac{5}{3}\)

\(x< 2\)

TH2 : nếu \(\left|x-\frac{1}{3}\right|< 0\)

\(\frac{1}{3}-x< \frac{5}{3}\)

\(x>-\frac{4}{3}\)

14 tháng 7 2016

Bài 2 :

a. \(\left(x-2\right)^2=1\)

\(\left(x-2\right)^2-1=0\)

\(\left(x-2-1\right)\left(x-2+1\right)=0\)

\(\left(x-3\right)\left(x-1\right)=0\)

\(\left[\begin{array}{nghiempt}x-3=0\\x-1=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=3\\x=1\end{array}\right.\)

23 tháng 10 2017

Bài 1:

a) \(2\left(x-\sqrt{12}\right)^2=6\Rightarrow\left(x-\sqrt{12}\right)^2=3\)

TH1l \(x-\sqrt{12}=\sqrt{3}\Rightarrow x=\sqrt{3}+\sqrt{12}=3\sqrt{3}\)

TH2: \(x-\sqrt{12}=-\sqrt{3}\Rightarrow x=-\sqrt{3}+\sqrt{12}=\sqrt{3}\)

b)  \(2x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\2\sqrt{x}-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)

c) \(|2x+\sqrt{\frac{9}{16}}|-x=\left(\frac{1}{\sqrt{2}}\right)^2\Leftrightarrow\left|2x+\frac{3}{4}\right|-x=\frac{1}{2}\)

TH1: \(2x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{8}\)

Ta có \(2x+\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow x=-\frac{1}{4}\left(tm\right)\)

TH2: \(x< -\frac{3}{8}\)

Ta có \(-2x-\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow-3x=\frac{5}{4}\Leftrightarrow x=-\frac{5}{12}\left(tm\right)\)

Bài 2:  Để \(A=\frac{2\sqrt{x}+3}{\sqrt{x}-2}\) là số nguyên thì \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\)

Ta có \(\frac{2\left(\sqrt{x}-2\right)+7}{\sqrt{x}-2}=2+\frac{7}{\sqrt{x}-2}\)

Để \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\) thì \(\frac{7}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2\inƯ\left(7\right)\)

Do \(\sqrt{x}-2\ge-2\Rightarrow\sqrt{x}-2\in\left\{-1;1;7\right\}\)

\(\Rightarrow x\in\left\{1;9;81\right\}\)

22 tháng 10 2017

 Bài 1 :

\(2\left(x-\sqrt{12}\right)^2=6\)

\(\Rightarrow\left(x-\sqrt{12}\right)^2=6:2=3\)

\(\Rightarrow x-\sqrt{12}=\sqrt{3}\)

\(\Rightarrow x=3\sqrt{3}\)

14 tháng 7 2018

a) \(2\sqrt{x}-10=20\left(ĐKXD:x\ge0\right)\)

\(\Leftrightarrow2\sqrt{x}=30\Leftrightarrow\sqrt{x}=15\)

\(\Leftrightarrow x=225\)

b) \(2x-\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)

\(\Leftrightarrow2x=\sqrt{x}\Leftrightarrow4x^2=x\Leftrightarrow4x^2-x=0\Leftrightarrow x\left(4x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}}\)

Vậy ....

c) \(x+3\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)

Vậy x = 0

d) \(\left(x-1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x\in\varnothing\end{cases}}}\)

Vậy x = 1

14 tháng 7 2018

a.\(2\sqrt{x}=20+10\)

\(2\sqrt{x}=30\)

\(\sqrt{x}=30:2\)

\(\sqrt{x}=15\)

\(x=15^2\)

x=225

15 tháng 10 2017

a) \(x^2-2=0\)

\(x^2=2\)

\(\Rightarrow x=\sqrt{2}\)

vậy \(x=\sqrt{2}\)

b) \(\sqrt{x}\left(x^2-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\x^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

         vậy \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

15 tháng 10 2017

a)\(x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)

b)\(\sqrt{x}\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\x^2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\\x=-1\end{cases}}}\)

5 tháng 12 2017

Bài 1:\(3^{x+2}-3^x=24\Rightarrow3^x.3^2-3^x=24\Rightarrow3^x.\left(3^2-1\right)=24\Rightarrow3^x.8=24\Rightarrow3^x=3\Rightarrow x=1\)

Bài 2:a,Chọn đáp án C.x0=1

b,Chọn đáp án D\(-\sqrt{2}+\sqrt{5}\) vì \(\sqrt{5}>\sqrt{2}\Rightarrow\left|\sqrt{2}-\sqrt{5}\right|=-\left(\sqrt{2}-\sqrt{5}\right)\)

a: =>0,2-x=7

=>x=-6,8

b: =>x=6 hoặc x=-6

c: =>x^2=5

hay \(x=\pm\sqrt{5}\)

d: =>x^2=2

hay \(x=\pm\sqrt{2}\)

e: =>x-1=2 hoặc x-1=-2

=>x=-1 hoặc x=3

f: =>2x+1=7 hoặc 2x+1=-7

=>2x=-8 hoặc 2x=6

=>x=3 hoặc x=-4