Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\left(2x+3\right)^2+\left(2x-3\right)^2+2\left(2x+3\right)\left(2x-3\right)\)
\(=\left(2x+3+2x-3\right)^2=\left(4x\right)^2=16x^2\)
Bài 2:
a, \(\left(x^2+xy+y^2\right)\left(x-y\right)+\left(x^2-xy+y^2\right)\left(x+y\right)\)
\(=x^3-y^3+x^3+y^3=2x^3\)
b, \(\left(2a-b\right)\left(4a^2+2ab+b^2\right)\)
\(=\left(2a\right)^3-b^3=8a^3-b^3\)
c, \(13x\left(3-x\right)-12\left(x+1\right)\)
\(=39x-13x^2-12x-12=-13x^2-27x-12\)
d, \(\left(2x-1\right)\left(x+12\right)\left(x^2+14\right)\)
\(=\left(2x^2+24x-x-12\right)\left(x^2+14\right)\)
\(=2x^4+23x^3-12x^2+28x^2+322x-168\)
\(=2x^4+23x^3+16x^2+322x-168\)
e, Giống câu b
Chúc bạn học tốt!!!
a) \(A=\left(3x+2\right)^2-9x\left(x+1\right)\)
\(A=9x^2+12x+4-9x^2-9x\)
\(A=3x+4\)
\(B=\left(2x-1\right)^2-2\left(2x-1\right)\left(5x-1\right)+\left(5x-1\right)^2\)
\(B=\left[2x-1-\left(5x-1\right)\right]^2\)
\(B=\left(2x-1-5x+1\right)^2\)
\(B=\left(-3x\right)^2\)
\(B=9x^2\)
6) c) x3 - x2 + x = 1
<=> x3 - x2 + x - 1 = 0
<=> (x3 - x2) + (x - 1) = 0
<=> x2 (x - 1) + (x - 1) = 0
<=> (x - 1) (x2 + 1) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
* x - 1 = 0 => x = 1
* x2 + 1 = 0 => x2 = -1 => x = -1
Vậy x = 1 hoặc x = -1
Bài 5:
a) Đặt \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{8}\)
b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)
=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)
\(=\left(7x+6-5+6x\right)^2\)
\(=\left(13x+1\right)^2\)
Bài 1
a) (6x4y2 - 3x3y3) : 3x3y2 = 6x4y2 : 3x3y2 - 3x3y3 : 3x3y2 = 2x - y
b) (2x - 1)(x2 - x + 3) = 2x3 - 2x2 + 6x - x2 + x - 3 = 2x3 - 3x2 + 7x - 3
Bài 2
1) (x - 2)2 - (x - 3)2 = (x - 2 - x + 3)(x - 2 + x - 3) = 2x - 5>
2) 4x2 - 4xy + 2y2 + 1 = (4x2 - 4xy + y2) + y2 + 1 = (2x - y)2 + y2 + 1 > 0
vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)
Bài 13:
a) \(501^2\)
\(=\left(500+1\right)^2\)
\(=500^2+2\cdot500\cdot1+1^2\)
\(=250000+1000+1\)
\(=251001\)
b) \(88^2+24\cdot88+12^2\)
\(=88^2+2\cdot12\cdot88+12^2\)
\(=\left(88+12\right)^2\)
\(=100^2\)
\(=10000\)
c) \(52\cdot48\)
\(=\left(50+2\right)\left(50-2\right)\)
\(=50^2-2^2\)
\(=2500-4\)
\(=2496\)
Bài 14:
a) \(P=\left(2x-1\right)\left(4x^2+2x+1\right)+\left(x+1\right)\left(x^2-x+1\right)\)
\(P=\left(2x\right)^3-1+x^3+1\)
\(P=8x^3+x^3\)
\(P=9x^3\)
b) \(Q=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)+2y^3\)
\(Q=x^3-y^3-x^3-y^3+2y^3\)
\(Q=-2y^3+2y^3\)
\(Q=0\)
Bài `14`
`a. P = ( 2x - 1 ) ( 4x^2 + 2x + 1 ) + ( x + 1 ) ( x^2 -x+1)`
`=(2x)^3-1^3 + x^3+1^3`
`=8x^3-1+x^3+1`
`= 9x^3`
__
`b, Q = ( x - y ) ( x^2 + xy + y^2 ) - ( x + y ) ( x^2 - xy + y^2)+2y^3`
`=x^3-y^3 -(x^3+y^3)+2y^3`
`=x^3-y^3 -x^3-y^3+2y^3`
`= 0`