Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Bài 15. a) Tìm sáu bội của 6 ; b) Tìm các bội nhỏ hơn 30 của 7.
a) 6 bội của 6 là : {0 ; 6 ; 12 ; 18 ; 24 ; 30}
b) bội nhỏ hơn 30 của 7 là : {0 ; 7 ; 14 ; 21 ; 28}
Bài 16. a) Tìm tất cả các ước của 36 ; b) Tìm các ước lớn hơn 10 của 100
a) Ư(36) = {1 ; 2 ; 3 ; 4 ;6 ; 9 ; 12 ; 18}
b) Ư(100) = {20 ; 25 ; 50}
Bài 17. Tìm số tự nhiên x , biết a) x là bội của 11 và 10 x 50 . b) x vừa là bội của 25 vừa là ước của 150.
a) vậy x E BC(11 và 500) vì 11 và 500 nguyên tố cùng nhau nên BC(11 ; 500) = 500 x 11 = 5500
vậy x \(⋮\)25 và 150 \(⋮\)x B(25) = {0 ; 25 ; 50 ; 75 ; 100 ; 125 ; 150 ; 175...}
Ư(150) = {1 ; 2 ; 3 ; 5 ; 6 ; 10 ; 15 ; 25 ; 30 ; 50 ; 75 ; 150} => a = (25 ; 50 ; 75)
Bài 18. Trong các số: 4827,5670,6915,2007 , số nào: a) chia hết cho 2 ? b) chia hết cho 3 ? c) chia hết cho 5 ? d) chia hết cho 9 ?
a) chia hết cho 2 là : 5670
b) chia hết cho 3 là : 2007 ; 6915 ; 5670 ; 4827
c) chia hết cho 5 là : 5670 ; 6915
d) chia hết cho 9 là : 2007 ;
Bài 19. Trong các số sau: 0,12,17,23,110,53,63,31 , số nào là số nguyên tố?
SNT là : 17 ; 23 ; 53 ; 31
Bài 20. Thay dấu * bằng chữ số thích hợp để mỗi số sau là số nguyên tố: a) 4* b) 7*, c) * d) 2*1
4* = 41 ; 43 ; 47
7* = 71 ; 73 ; 79
* = 2 ; 3 ; 5 ; 7
2*1 ; 221 ; 211 ; 251 ; 271
Bài 21. Thay dấu * bằng chữ số thích hợp để mỗi số sau là hợp số: a) 1* ; b) * 10 c) *1 d) *73.
1* = 11 ; 13 ; 17 ; 19
*10 = ???
*1 = 11 ; 31 ; 41 ; 61 ; 71 ; 91
*73 = 173 ; 373 ; 473 ; 673 ; 773 ; 973
bai 1
do n nguyen to va n la STN co 1 chu so . dong thoi 4 va 12 chăn nên để n+4 va n+12 nghuyen to thi n lẻ
do 12 chia het cho 3 nen n ko la 3 ,
do 4+5=9 chia het cho 3 nen nko la 5
neu n=7 thi n nguyen to va n + 4 = 11 , n+12 = 17 deu nguyen to (Thoa man)
vay n= 7 la tn
(mik lam nhu vay ko biet co dug ko ? nhung mik nghi la nhu vay )
- Để tìm hai số tự nhiên a và b thoả mãn a + b = 810 và ước chung lớn nhất của chúng bằng 45, ta có thể sử dụng phương pháp giải hệ phương trình. Gọi UCLN(a, b) là ước chung lớn nhất của a và b.
Vì UCLN(a, b) = 45, ta có thể viết a = 45x và b = 45y, với x và y là các số tự nhiên. Thay vào phương trình a + b = 810, ta có 45x + 45y = 810, hay x + y = 18.
Bây giờ ta cần tìm hai số tự nhiên x và y thoả mãn x + y = 18. Có nhiều cách để làm điều này, ví dụ như x = 9 và y = 9. Khi đó, a = 45x = 45 * 9 = 405 và b = 45y = 45 * 9 = 405.
Vậy, hai số tự nhiên a và b là 405 và 405.
- Để tìm hai số nguyên tố p và q thoả mãn p > q và p + q cũng như p - q đều là số nguyên tố, ta cần kiểm tra các số nguyên tố và tìm hai số thoả mãn yêu cầu.
Có nhiều cách để làm điều này, ví dụ như kiểm tra từng số nguyên tố theo thứ tự tăng dần và kiểm tra điều kiện p + q và p - q cũng là số nguyên tố.
Ví dụ:
- Kiểm tra số nguyên tố đầu tiên là 2. Ta sẽ thử p = 3 và q = 2. Khi đó, p + q = 3 + 2 = 5 là số nguyên tố và p - q = 3 - 2 = 1 không là số nguyên tố. Không thoả mãn yêu cầu.
- Tiếp theo, kiểm tra số nguyên tố thứ hai là 3. Ta sẽ thử p = 5 và q = 3. Khi đó, p + q = 5 + 3 = 8 không là số nguyên tố. Không thoả mãn yêu cầu.
- Tiếp tục kiểm tra các số nguyên tố tiếp theo. Cứ tiếp tục thử cho đến khi tìm được hai số thoả mãn yêu cầu.
Lưu ý rằng việc tìm hai số nguyên tố p và q thoả mãn yêu cầu là một vấn đề tương đối phức tạp và không có một cách giải đơn giản. Ta cần kiểm tra và thử nghiệm để tìm được kết quả.
nam moooooooooooooooooooooooooooooooo