K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2016

bài 12 :

a,\(\left(x-\frac{1}{2}\right)^2=0\)

Mà: 02=0

=> \(\left(x-\frac{1}{2}\right)^2=0^2\)

\(\Rightarrow x-\frac{1}{2}=0\)

\(\Rightarrow x=\frac{1}{2}\)

b,  \(\left(x-2\right)^2=1\)

Mà : 1=12

\(\Rightarrow\left(x-2\right)^2=1^2\)

=> x - 2 = 1

=> x = 3

c, \(\left(2x-1\right)^3=-8\)

\(\Rightarrow\left(2x-1\right)=-2\)

Vì -8 =-23

nên ...

=> 2x =-1

=> x=0.5

d.\(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)

cái này cũng như mấy cái trên thôi

 

21 tháng 9 2016

Bài 12:

a) \(\left(x-\frac{1}{2}\right)^2=0\)

\(\Rightarrow x-\frac{1}{2}=0\)

\(x=\frac{1}{2}\)

b) \(\left(x-2\right)^2=1\)

\(x-2=\pm1\)

  • Nếu \(x-2=1\)

\(x=3\)

  • Nếu \(x-2=-1\)

\(x=1\)

c) \(\left(2x-1\right)^3=-8\)

\(\Rightarrow2x-1=-2\)

\(2x=-1\)

\(x=-\frac{1}{2}\)

d) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)

\(x+\frac{1}{12}=\pm\frac{1}{4}\)

  • Nếu \(x+\frac{1}{12}=\frac{1}{4}\)

\(x=\frac{1}{6}\)

  • Nếu \(x+\frac{1}{12}=-\frac{1}{4}\)

\(x=-\frac{1}{3}\)

Bài 13: có người làm rồi

Bài 14:

a) \(25^3\div5^2\)

\(=\left(5^2\right)^3\div5^2\)

\(=5^6\div5^2=5^4\)

b) \(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)

\(=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)

\(=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^9\)

c) \(3-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2\)

\(=3-1+\frac{1}{4}:2\)

\(=2+\frac{1}{8}=2\frac{1}{8}\)

16 tháng 9 2016

\(25^3\div5^2=\left(5^2\right)^3\div5^2=5^6\div5^2=5^4=625\)

\(\left(\frac{3}{7}\right)^{21}\div\left(\frac{9}{49}\right)^6=\left(\frac{3}{7}\right)^{21}\div\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{21}\div\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^9\)

\(3-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2\div2=3-1+\frac{1}{4}\times\frac{1}{2}=2+\frac{1}{8}=\frac{17}{8}\)

13 tháng 8 2019

3.

a) \(\left(x-1\right)^3=125\)

=> \(\left(x-1\right)^3=5^3\)

=> \(x-1=5\)

=> \(x=5+1\)

=> \(x=6\)

Vậy \(x=6.\)

b) \(2^{x+2}-2^x=96\)

=> \(2^x.\left(2^2-1\right)=96\)

=> \(2^x.3=96\)

=> \(2^x=96:3\)

=> \(2^x=32\)

=> \(2^x=2^5\)

=> \(x=5\)

Vậy \(x=5.\)

c) \(\left(2x+1\right)^3=343\)

=> \(\left(2x+1\right)^3=7^3\)

=> \(2x+1=7\)

=> \(2x=7-1\)

=> \(2x=6\)

=> \(x=6:2\)

=> \(x=3\)

Vậy \(x=3.\)

Chúc bạn học tốt!

13 tháng 8 2019

Giúp mk với nha các bạn

8 tháng 9 2021

toi ko co the bt day nh vau ko dau

28 tháng 9 2021

=0 bạn nha

27 tháng 7 2023

Bài 6 :

a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)

b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)

c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)

d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)

27 tháng 7 2023

Bài 7 :

a) \(3^x+3^{x+2}=9^{17}+27^{12}\)

\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)

\(\Rightarrow10.3^x=3^{34}+3^{36}\)

\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)

\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)

b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)

\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)

\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)

c) Bài C bạn xem lại đề

d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)

\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)

\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)

\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)

\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)

\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)