K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Gọi \(d\)là \(ƯC\left(n+4;n+3\right)\)\(\left(d\ne0;d\in Z\right)\)

\(\Rightarrow n+4⋮d;n+3⋮d\)

\(\Rightarrow n+4-n+3⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{n+4}{n+3}\)là phân số tối giản.

b) Gọi \(d\)là \(ƯC\left(2n+1;n+1\right)\)

\(\Rightarrow2n+1⋮d;n+1⋮d\)

\(\Rightarrow2n+1⋮d;2\left(n+1\right)⋮d\)

\(hay\)\(2n+1⋮d;2n+2⋮d\)

\(\Rightarrow2n+2-2n+1\)\(⋮\)\(d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{2n+1}{n+1}\)là phân số tối giản.

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

6 tháng 2 2018

Bài 1:

Do \(\frac{a}{b}\) là một phân số chưa tối giản nên ta có thể đặt \(\hept{\begin{cases}a=md\\b=nd\end{cases}}\left[d=\left(a;b\right);\left(m;n\right)=1\right]\)

Khi đó ta có:

a) \(\frac{a}{a-b}=\frac{md}{md-nd}=\frac{md}{\left(m-n\right)d}\) chưa là phân số tối giản  (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)

b) \(\frac{2a}{a-2b}=\frac{2md}{md-2nd}=\frac{2md}{\left(m-2n\right)d}\) chưa là phân số tối giản   (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)

21 tháng 2 2016
a) 15n + 1/ 30n + 1 goi ucln cua 15n + 1/ 30n +1 la d ={15n + 1 hcia het cho d 30n + 1 chia het cho d 15n + 1 chia het cho d suy ra 4 (15n+ 1) chia het cho d (1) 30n +1 chia het cho d suy ra 2 ( 30n +1 ) (2) tu (1) va (2) theo t/c chia het mot hieu ta co 4(15n + 1)- 2(30n+1)chia het cho d 60n -4 - 60n - 2chia het cho d suy ra 1 chia het cho d suy ra d=1 vay d=1 nen UCLN( 15n +1, 30n +1) =1 vay phan so do la phan so toi gian
21 tháng 6 2015

Đầu tiên, nhận thấy khi n lẻ thì tử và mẫu đều là số chẵn, không thỏa 
Vậy n phải là số chẵn 
Ta có (n+1)/(n-3)=1+4/(n-3) 
4 có các ước là -4;-2;-1;1;2;4 
Khi n là số chẵn thì n-3 lẻ. Do đó để 4/(n-3) tối giản thì n-3<>-1 và n-3<>1 hay n<>2 và n<>4 
Kết luận: để (n+1)/(n-3) là tối giản thì n phải là số chẵn khác 2 và 4. 

Chú ý: lý luận n-3 là ước của 4 chỉ có thể áp dụng để giải bài toán "tìm n để (n+1)/(n-3) là số nguyên", nếu áp dụng vào bài toán này thì sẽ không chính xác lắm. 

PS. Bài này anh giải theo hướng (n+1)/(n-3), còn nếu là n+1/(n-3) thì dễ hơn nhiều. Vì thế, khi gửi đề toán, em làm ơn dùng DẤU NGOẶC ĐƠN để diễn tả đúng biểu thức nhé! 

n+1/n-3 nghĩa là n cộng cho 1/n, tất cả trừ 3. Cái này thì có lẽ không đúng ý của em là n<>3 
n+1/(n-3) nghĩa là n cộng cho thuơng 1/(n-3). Cái này giải ra n khác 4 và n khác 2 
(n+1)/(n-3) nghĩa là (n+1) là tử số, (n-3) là mẫu số. Cái này giải ra n là số chẵn khác 4 và 2