Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\)
Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)
\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-1}{\sqrt{x}+1}\)
a) ĐKXĐ : \(0\le x\ne4\)
b) \(A=\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{\sqrt{x}}{2-\sqrt{x}}+\frac{4\sqrt{x}-1}{x-4}\right):\frac{1}{x-4}\)
\(=\left[\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right].\left(x-4\right)\)
\(=\frac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
\(=\frac{-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)=-1\)
\(A=\left[\frac{\left(\sqrt{x}-2\right)\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4\sqrt{x}-1}{x-4}\right]:\frac{1}{x-4}\)
\(=\frac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{x-4}.\left(x-4\right)\)=\(=\frac{-1}{x-4}.\left(x-4\right)=-1\)
Vậy giá trị của A thỏa mãn mọi x và rút gọn lại còn -1
Bạn xem nhé! Đây là phần mình sưu tầm được khá chi tiết rồi
a) Ta có:
\(VT=x - 4\sqrt {x - 4} \)
\(= \left( {x - 4} \right) - 2.2\sqrt {x - 4} + 4\)
\( = {\left( {\sqrt {x - 4} } \right)^2} - 2.2\sqrt {x - 4} + {2^2} \)
\(= {\left( {\sqrt {x - 4} - 2} \right)^2}=VP\)
Vế trái bằng vế phải nên đẳng thức được chứng minh.
b) A xác định khi: \(x - 4 \ge 0\) và \(x - 4\sqrt {x - 4} \ge 0\)
\(x - 4 \ge 0 \Leftrightarrow x \ge 4\)
\(\eqalign{
& x - 4\sqrt {x - 4} = \left( {x - 4} \right) - 2.2\sqrt {x - 4} + 4 \cr
& = {\left( {\sqrt {x - 4} - 2} \right)^2} \ge 0\text{( luôn đúng )} \cr} \)
Ta có:
\(A = \sqrt {x + 4\sqrt {x - 4} } + \sqrt {x - 4\sqrt {x - 4} } \)
\( = \sqrt {{{\left( {\sqrt {x - 4} + 2} \right)}^2}} + \sqrt {{{\left( {\sqrt {x - 4} - 2} \right)}^2}} \)
\( = \left| {\sqrt {x - 4} + 2} \right| + \left| {\sqrt {x - 4} - 2} \right|\)
\( = \sqrt {x - 4} + 2 + \left| {\sqrt {x - 4} - 2} \right|\)
- Nếu
\(\eqalign{
& \sqrt {x - 4} - 2 \ge 0 \Leftrightarrow \sqrt {x - 4} \ge 2 \cr
& \Leftrightarrow x - 4 \ge 4 \Leftrightarrow x \ge 8 \cr} \)
thì: \(\left| {\sqrt {x - 4} - 2} \right| = \sqrt {x - 4} - 2\)
Ta có: \(A = \sqrt {x - 4} + 2 + \sqrt {x - 4} - 2 = 2\sqrt {x - 4} \)
- Nếu:
\(\eqalign{
& \sqrt {x - 4} - 2 < 0 \Leftrightarrow \sqrt {x - 4} < 2 \cr
& \Leftrightarrow x - 4 < 4 \Leftrightarrow x < 8 \cr} \)
thì \(\left| {\sqrt {x - 4} - 2} \right| = 2 - \sqrt {x - 4} \)
Ta có: \(A = \sqrt {x - 4} + 2 + 2 - \sqrt {x - 4} = 4\)
CÁC TÁC PHẨM KHÁC
BÀI VIẾT MỚI NHẤT