Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
\(<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(<1-\frac{1}{2010}\)
\(<\frac{2009}{2010}<1\)
=>N<1
Ta có : 2009/2010 < 1
2010/2011 < 1
2011/2012 < 1
2012/2013 < 1
Cộng vế trái của 4 bpt và vế phải của bpt ta có :
2009/2010 + 2010/2011 + 2011/2012 + 2012/2013 < 4 ( đpcm )
Số số hạng của A :
( 2013 - 1 ) : 1 + 1 = 2013
A = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 2009 + 2010 - 2011 - 2012 + 2013
A = ( 1 - 3 ) + ( 2 - 4 ) + ( 5 - 7 ) + ( 6 - 8 ) + ... + ( 2009 - 2011 ) + ( 2010 - 2012 ) + 2013
A = -2 + ( -2 ) + ( -2 ) + ( -2 ) + ... + ( -2 ) + ( -2 ) + 2013
A = -2 . [ ( 2013 - 1 ) : 2 ] + 2013
A = -2 . 1006 + 2013
A = -2012 + 2013
A = 1
A=(1-2-3+4)+(5-6-7+8)+...+(2009-2010-2011+2012)+2013
A=0+0+0+...+0+2013
A=2013
\(b)\) Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)
Vậy \(\frac{2009^{2009}+1}{2009^{2010}+1}>\frac{2009^{1010}-2}{2009^{2011}-2}\)
Chúc bạn học tốt ~
Àk mình còn thiếu một điều kiện nữa xin lỗi nhé :
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Bạn thêm vào nhé
10.
Sửa lại đề :Cho \(P=\dfrac{2009}{2010}+\dfrac{2010}{2011}+\dfrac{2012}{2013}+\dfrac{2013}{2009}\).Chứng tỏ rằng P<5.
\(P=\dfrac{2009}{2010}+\dfrac{2010}{2011}+\dfrac{2012}{2013}+\dfrac{2013}{2009}\)
\(P=\dfrac{2011}{2012}\)
\(\Rightarrow P< 5\)