Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Để hàm số này là hàm bậc nhất thì
\(\hept{\begin{cases}\left(3n-1\right)\left(2m+3\right)=0\\4m+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=\frac{1}{3}\\m=\frac{-3}{2}\end{cases}}\)
Các câu còn lại làm tương tự nhé bạn
B1a) m khác 5, khác -2
b) m khác 3, m < 3
B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến
b) h số trên là nghịch biến vì 2x > căn 3x
c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến
Để hàm số là hàm số bậc nhất thì hệ số \(a\ne0\)
a) Cm : \(\sqrt{3-m}\ne0\Rightarrow m\ne3\)
b) \(\frac{m-5}{m+2}\ne0\Rightarrow m\ne5\)
Bài 2 :
Để hàm số đồng biến thì hệ số \(a>0\)
Để hàm số nghịch biến thì hệ số \(a< 0\)
Gợi ý z tư làm nha
Để hàm ssoo đã cho là hàm số bậc nhất thì
a | \(\frac{m}{2}\ne0\Leftrightarrow m\ne0\) |
b | \(3m+1\ne0\Leftrightarrow m\ne-\frac{1}{3}\) |
c | \(\hept{\begin{cases}\sqrt{5-m}\ne0\\5-m\ge0\end{cases}\Leftrightarrow m< 5}\) |
Để hàm là bậc nhất:
a/ \(2m\ne0\Leftrightarrow m\ne0\)
b/ \(m^2-4>0\Leftrightarrow\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}m-2\ne0\\m\ne0\end{matrix}\right.\) \(\Leftrightarrow m\ne\left\{0;2\right\}\)
d/ Bạn coi lại đề
e/ \(m^2-1=0\Leftrightarrow m=\pm1\)
a/ \(2m-3>0\Rightarrow m>\frac{3}{2}\)
b/ \(\left\{{}\begin{matrix}4-3m\ne0\\2m+5\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne\frac{4}{3}\\m\ne-\frac{5}{2}\end{matrix}\right.\)
c/ \(7m-3\ne0\Rightarrow m\ne\frac{3}{7}\)
d/ \(m\ne0\)