Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A=(-7/4; -1/2]
\(B=\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\)
\(C=\left(\dfrac{2}{3};+\infty\right)\)
b: \(\left(A\cap B\right)\cap C=\varnothing\)
\(\left(A\cup C\right)\cap\left(B\A\right)\)
\(=(-\dfrac{7}{4};-\dfrac{1}{2}]\cup\left(\dfrac{2}{3};+\infty\right)\cap\left[\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\right]\)
\(=\left(4;\dfrac{9}{2}\right)\)
Nguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh HằngRibi Nkok NgokMysterious PersonVõ Đông Anh TuấnPhương AnTrần Việt Linh
2/|1-x|>=3
=>(2-3|x-1|)/|x-1|>=0
=>2-3|x-1|>=0
=>3|x-1|<=2
=>|x-1|<=2/3
=>-2/3<=x-1<=2/3
=>1/3<=x<=5/3
A=[1/3;5/3]
|x+1|=2
=>x+1=2 hoặc x+1=-2
=>x=1 hoặc x=-3
B={1;-3}
A=[1/3;5/3]
A giao B={1}
A giao B=[1/3;5/3] hợp {-3}
A\B=[1/3;5/3]\{1}
1: A={-3;-2;-1;0;1;2;3}
B={2;-2;4;-4}
A giao B={2;-2}
A hợp B={-3;-2;-1;0;1;2;3;4;-4}
2: x thuộc A giao B
=>\(x=\left\{2;-2\right\}\)
\(\left|x-3\right|>4\Rightarrow\left[{}\begin{matrix}x-3>4\\x-3< -4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x>7\\x< -1\end{matrix}\right.\)
\(\Rightarrow A=\left(-\infty;-1\right)\cup\left(7;+\infty\right)\)
\(\left|2x-1\right|< 2\Leftrightarrow-2< 2x-1< 2\Leftrightarrow-\frac{1}{2}< x< \frac{3}{2}\)
\(\Rightarrow B=\left(-\frac{1}{2};\frac{3}{2}\right)\)
\(A\cap B=\varnothing\)
\(A\backslash B=A\)
\(A\cup B=\left(-\infty;-1\right)\cup\left(-\frac{1}{2};\frac{3}{2}\right)\cup\left(7;+\infty\right)\)
A=[-4;4]
B=[-3;2)
\(A\cap B\)=[-3;2)
A\B=[-4;-3)
B\A=\(\varnothing\)
A=(-2;2)
B=[-3;2)
A giao B=(-2;2)
A\B=\(\varnothing\)
B\A=[-3;-2]
\(C_R\left(A\cap B\right)=R\backslash\left(-2;2\right)=(-\infty;-2]\cup[2;+\infty)\)
Bài 3:
a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)
b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)
c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)
d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)