K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

a: 

loading...

b: tọa độ A là;

-x+5=4x và y=4x

=>x=1 và y=4

Tọa độ B là;

-x+5=-1/4x và y=-1/4x

=>-3/4x=-5 và y=-1/4x

=>x=5:3/4=5*4/3=20/3 và y=-1/4*20/3=-5/3

=>B(20/3;-5/3)

c: O(0;0); A(1;4); B(20/3;-5/3)

\(OA=\sqrt{1^2+4^2}=\sqrt{17}\)

\(OB=\sqrt{\left(\dfrac{20}{3}\right)^2+\left(-\dfrac{5}{3}\right)^2}=\dfrac{5\sqrt{17}}{3}\)

\(AB=\sqrt{\left(\dfrac{20}{3}-1\right)^2+\left(-\dfrac{5}{3}-4\right)^2}=\dfrac{\sqrt{818}}{3}\)

\(cosAOB=\dfrac{OA^2+OB^2-AB^2}{2\cdot OA\cdot OB}=\dfrac{-8}{17}\)

=>góc AOB tù

=>ΔOAB tù

29 tháng 11 2017

a) Bạn tự vẽ.

b) Lập PT hoành độ giao điểm:

(d1) giao (d2): \(-x-5=\frac{1}{4}x\Leftrightarrow x=-4\) thay vào (d1) được y = -1

Vậy: \(A\left(-4;-1\right)\). Tương tự tìm được \(B\left(-1;-4\right)\)

c) Ta có: \(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B+y_A\right)^2}=\sqrt{\left(-1+4\right)^2+\left(-4+1\right)^2}=3\sqrt{2}\)

\(OA=\sqrt{x^2_A+y^2_A}=\sqrt{4^2+1^2}=17;OB=\sqrt{x^2_B+y^2_B}=\sqrt{1^2+4^2}=\sqrt{17}\)

=> OAB là tam giác cân.

d) Gọi OAB là đường cao hạ từ điểm O xuống AB (H thuộc AB)

Vì tam giác OAB cân tại O nên \(AH=HB=\frac{1}{2}AB=\frac{3\sqrt{2}}{2}\)

\(OH=\sqrt{OA^2-BH^2}=\sqrt{17-\left(\frac{3\sqrt{2}}{2}\right)^2}=\frac{5\sqrt{2}}{2}\)

\(S_{ABC}=\frac{1}{2}AB.OH=\frac{1}{2}.3\sqrt{2}.\frac{5\sqrt{2}}{2}=\frac{15}{2}\)

11 tháng 11 2016

a/ Bạn tự vẽ

b/ Ta lập pt hoành độ giao điểm : 

(d1) giao với (d2) : \(-x-5=\frac{1}{4}x\Leftrightarrow x=-4\) thay vào (d1) được y = -1

Vậy A(-4;-1) . Tương tự ta tìm được điểm B(-1;-4)

c/ Ta có : \(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}=\sqrt{\left(-1+4\right)^2+\left(-4+1\right)^2}=3\sqrt{2}\)

\(OA=\sqrt{x_A^2+y_A^2}=\sqrt{4^2+1^2}=\sqrt{17}\) ; \(OB=\sqrt{x_B^2+y_B^2}=\sqrt{1^2+4^2}=\sqrt{17}\) 

=> OAB là tam giác cân

d/ Gọi OH là đường cao hạ từ O xuống AB (H thuộc AB)

Vì tam giác OAB cân tại O nên AH = HB = 1/2AB = \(\frac{3\sqrt{2}}{2}\)

\(OH=\sqrt{OA^2-BH^2}=\sqrt{17-\left(\frac{3\sqrt{2}}{2}\right)^2}=\frac{5\sqrt{2}}{2}\)

\(S_{ABC}=\frac{1}{2}AB.OH=\frac{1}{2}.3\sqrt{2}.\frac{5\sqrt{2}}{2}=\frac{15}{2}\) 

9 tháng 11 2016

câu b giải pt hoành độ giao điểm bài này de ma

23 tháng 4 2017

a) – Vẽ đường thẳng (1) qua gốc tọa độ O và điểm (1; 2)

-Vẽ đường thẳng (2) qua gốc tọa độ O và điểm (1; 0,5)

-Vẽ đường thẳng (3) qua hai điểm (0; 6) và (6; 0).

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Gọi A, B theo thứ tự là giao điểm của đường thẳng (3) với các đường thẳng (1) và (2), ta có:

- x + 6 = 2x => x = 2 => y = 4 => A(2; 4)

- x + 6 = 0,5x => x = 4 => y = 2 => B(4; 2)

Để học tốt Toán 9 | Giải bài tập Toán 9

14 tháng 11 2017

a) – Vẽ đồ thị y = 2x (1):

    Cho x= 0 ⇒ y= 0 ta được O (0, 0)

    Cho x= 2 ⇒ y = 4 ta được điểm (2; 4)

- Vẽ đồ thị y = 0,5x (2):

    Cho x= 0 ⇒ y = 0 ta được O (0; 0)

    Cho x = 4 ⇒ y = 2 ta được điểm (4; 2)

- Vẽ đồ thị y = -x + 6 (3):

    Cho x = 0 ⇒ y = 6 được điểm (0; 6)

    Cho y = 0 ⇒ x = 6 được điểm (6; 0)

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Theo đề bài A, B theo thứ tự là giao điểm của đường thẳng (3) với các đường thẳng (1) và (2), nên ta có:

Hoành độ giao điểm của A là nghiệm của phương trình:

    - x + 6 = 2x ⇒ x = 2

=> y = 4 => A(2; 4)

Hoành độ giao điểm của B là nghiệm của phương trình:

    - x + 6 = 0,5x ⇒ x = 4

⇒ y = 2 ⇒ B(4; 2)

c) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

 

23 tháng 4 2017

a) * Vẽ đồ thị hàm số y = 0,5x + 2 (1)

Cho x = 0, tính được y = 2 => D(0; 2) thuộc đồ thị.

Cho y = 0, 0 = 0,5.x + 2 => x = -4 => A(-4; 0) thuộc đồ thị. Đường thẳng vẽ qua A, D là đồ thị của (1).

*Vẽ đồ thị hàm số y = 5 – 2x (2)

-Cho x = 0 tính được y = 5 E(0; 5) thuộc đồ thị

-Cho y = 0, 0 = 5 – 2x => x = 2,5 => B(2,5; 0) thuộc đồ thị. Đường thẳng vẽ qua B, E là đồ thị của (2).

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ở câu a) ta tính được tọa độ của hai điểm A và B: A(-4; 0), B(2,5; 0)

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge24x+4x12  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}4x=4x1=1x=41). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016A2x+14x+3+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014A4x+14x+3+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014Ax+14x4x+1+2014=x+1(2x1)2+20142014

Hơn nữa    A=2014A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.{x=412x1=0  \Leftrightarrow x=\dfrac{1}{4}x=41 .

Vậy  GTNN  =  2014

23 tháng 4 2017

(đơn vị đo trên các trục tọa độ là xentimet)

Lời giải:

a) Vẽ đường thẳng qua O(0; 0) và điểm M(1; 1) được đồ thị hàm số y = x. Vẽ đường thẳng qua B(0; 2) và E(-1; 0) được đồ thị hàm số y = 2x + 2.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Tìm tọa độ của điểm A: giải phương trình 2x + 2 = x, tìm được x = -2. Từ đó tìm được x = -2, từ đó tính được y = -2, ta có A(-2; -2).

c) Qua B(0; 2) vẽ đường thẳng song song với Ox, đường thẳng này có phương trình y = 2 và cắt đường thẳng y = x tại C.

5 tháng 1 2018

a) Đồ thị hàm số \(y=x\) là 1 đường thẳng đi qua 2 điểm O \(\left(0;0\right)\) và E\(\left(1;1\right)\)

Đồ thị hàm số \(y=2x+2\) là 1 đường thẳng đi qua 2 điểm B \(\left(0;2\right)\) và D \(\left(-1;0\right)\)

b) Hoành độ giao điểm A của 2 đường thẳng đã cho là nghiệm của pt:

\(x=2x+2\)

\(\Leftrightarrow\) \(x-2x=2\)

\(\Leftrightarrow\) \(-x=2\)

\(\Leftrightarrow\) \(x=-2\)

Tại \(x=-2\) thì giá trị của y là: \(y=2.\left(-2\right)+2=-2\)

Vậy tọa độ điểm A \(\left(-2;-2\right)\)

c) Đường thẳng song song với trục tung Ox và cắt trục hoành tại điểm B(0;2)

\(\Rightarrow\) Suy ra phương trình đường thẳng có dạng \(y=2x\)

Hoành độ giao điểm C của 2 đường thẳng y=2x và y=x là nghiệm của pt: 2x=x

\(\Rightarrow\) Tọa độ điểm C (2;2)

\(S_{ABC}=S_{ADO}+S_{BCOD}\)