K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

B1 : a/ (x + y)+(x - y)

= x + y + x - y

= ( x+ x ) + ( y - y )

= 2x + 0

= 2x

b/(x + y)-(x - y)

= x + y - x + y

= ( x - x ) +  ( y + y)

= 0 + 2y

= 2y

B2 : Lát nx nhé ( chx nghĩ ra :))))

24 tháng 3 2016

bài này ở quyển toán nâng cao và các chuyên đề bn ak

6 tháng 3 2018

a)

Ta có \(xy+x^2y^2+x^3y^3+...+x^{10}y^{10}\\ =\left(xy+x^3y^3+x^5y^5+...+x^9y^9\right).\left(x^2y^2+x^4y^4+x^6y^6+...+x^{10}y^{10}\right)\)

Thay x= -1 và y= 1 vào biểu thức trên ta được\(\left(-1\right)1+\left(-1\right)^21^2+...+\left(-1\right)^{10}1^{10}\\ =\left[\left(-1\right)1+\left(-1\right)^31^3+...+\left(-1\right)^91^9\right].\left[\left(-1\right)^21^2+\left(-1\right)^41^4+...+\left(-1\right)^{10}1^{10}\right]\\ =\left(-1-1-...-1\right)+\left(1+1+...+1\right)\\ =-5+5=0\)

b)

Ta có:\(xyz+x^2y^2z^2+x^3y^3z^3+...+x^{10}y^{10}z^{10}\\ =\left(xyz+x^3y^3z^3+x^5y^5z^5+...+x^9y^9z^9\right).\left(x^2y^2z^2+x^4y^4z^4+x^6y^6z^6+...+x^{10}y^{10}z^{10}\right)\)

Thay x=1; y= -1 và z= -1 vào biểu thức trên ta được\(\left(-1\right)\left(-1\right)1+\left(-1\right)^2\left(-1\right)^21^2+...+\left(-1\right)^{10}\left(-1\right)^{10}1^{10}\\ =\left[\left(-1\right)\left(-1\right)1+\left(-1\right)^3\left(-1\right)^31^3+...+\left(-1\right)^9\left(-1\right)^91^9\right].\left[\left(-1\right)^2\left(-1\right)^21^2+\left(-1\right)^4\left(-1\right)^41^4+...+\left(-1\right)^{10}\left(-1\right)^{10}1^{10}\right]\\ =\left(1+1+...+1\right)+\left(1+1+...+1\right)\\ =5+5=10\)

6 tháng 9 2020

Ta có xy+x2y2+x3y3+...+x10y10=(xy+x3y3+x5y5+...+x9y9).(x2y2+x4y4+x6y6+...+x10y10)xy+x2y2+x3y3+...+x10y10=(xy+x3y3+x5y5+...+x9y9).(x2y2+x4y4+x6y6+...+x10y10)

Thay x= -1 và y= 1 vào biểu thức trên ta được(−1)1+(−1)212+...+(−1)10110=[(−1)1+(−1)313+...+(−1)919].[(−1)212+(−1)414+...+(−1)10110]=(−1−1−...−1)+(1+1+...+1)=−5+5=0(−1)1+(−1)212+...+(−1)10110=[(−1)1+(−1)313+...+(−1)919].[(−1)212+(−1)414+...+(−1)10110]=(−1−1−...−1)+(1+1+...+1)=−5+5=0

b)

Ta có:xyz+x2y2z2+x3y3z3+...+x10y10z10=(xyz+x3y3z3+x5y5z5+...+x9y9z9).(x2y2z2+x4y4z4+x6y6z6+...+x10y10z10)xyz+x2y2z2+x3y3z3+...+x10y10z10=(xyz+x3y3z3+x5y5z5+...+x9y9z9).(x2y2z2+x4y4z4+x6y6z6+...+x10y10z10)

Thay x=1; y= -1 và z= -1 vào biểu thức trên ta được(−1)(−1)1+(−1)2(−1)212+...+(−1)10(−1)10110=[(−1)(−1)1+(−1)3(−1)313+...+(−1)9(−1)919].[(−1)2(−1)212+(−1)4(−1)414+...+(−1)10(−1)10110]=(1+1+...+1)+(1+1+...+1)=5+5=10

17 tháng 2 2021

thay x = -1 , y = -1 , z = -1 vào N ta có

N = 1 + (-1) + 1 + ... + 1 + (-1)

= [1 + (-1)] + [1 + (-1) ] + ... + [1 + (-1)]

= 0 + 0 + ... + 0

= 0

thay x = -1 , y = -1 , z = -1 và N ta có

N = 1 + (-1) + 1 + ... + 1 + (-1)

= [1 + (-1)] + [1 + (-1) ] + ... + [1 + (-1)]

= 0 + 0 + ... + 0

= 0

28 tháng 2 2019

=(-1).(-1)2.(-1)^3+(-1)^2.(-1)^3.(-1)^4+(-1)^3.(-1)^4.(-1)^5+...+(-1)^2014.(-1)^2015.(-1)^2016

=(-1).1.(-1)+1.(-1).1+(-1).1.(-1)+...+1.(-1).1

=1+(-1)+1+...+(-1)

=0+0+..+0= 0

23 tháng 2 2021

5rxdjexjgntrujnxgr6jexs6ue6thfydjytudcjxtyu45yuej8tuxr5ts

23 tháng 2 2021

hellp

12 tháng 4 2018

a) Thay x= -2 vào biểu thức trên ta có:

5.(-2)2 - 3.(-2) + 4.(-2) -16

= 5.4 + 6 - 8 - 16

=20 + 6 - 8 - 16

= 2

Ý a nka bn các ý cn lại cũng v thui

Ý d rút luỹ thừa bậc 2 ra ngoài còn xy2 nha!!!haha

12 tháng 4 2018

a/ Thay vào biểu thức tại x= -2, ta được:

5x2 - 3x + 4x - 16

= 5. (-2)2 - 3. (-2) + 4. (-2) - 16

= 20 - (-6) + (-8) - 16

= 2

Tớ làm câu a/ thôi rồi bạn tự làm đi nhé! dễ thôi mà.haha

29 tháng 5 2020

Bạn ơi câu b) bạn sai rồi, số nào nhân vs 0 đều = 0 nên đâu cần phải thay nữa đâu

29 tháng 5 2020

À nhầm mik nói câu a) chứ ko phải b)

19 tháng 4 2017

a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.

Trước hết ta thu gọn đa thức

A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3

Thay x = 5; y = 4 ta được:

A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.

Vậy A = 129 tại x = 5 và y = 4.

b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.

Thay x = -1; y = -1 vào biểu thức ta được:

M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8

= 1 -1 + 1 - 1+ 1 = 1.



22 tháng 1 2018

\(a.\)\(x^2+2xy-3x^3+2y^3+3x^3-y^3\)

=\(x^2+2xy+y^3\)

\(thếx=5;y=4\) \(ta\) \(có\)

= \(5^2+2.5.4+4^3\)

= 25 + 40 + 64

=129

b.

\(xy-x^2y^2+x^4y^4-x^6y^6+x^8y^8\)

thế \(x=-1;y=-1\) ta có:

(-1).(-1) - \(\left(-1\right)^2.\left(-1\right)^2\)+\(\left(-1\right)^4.\left(-1\right)^4-\left(-1\right)^6.\left(-1\right)^6+\left(-1\right)^8.\left(-1\right)^8\)

= 1 - 1.1 +1.1 - 1.1 +1.1

= 1-1+1-1+1

= 1

2 tháng 12 2017

có rảnh 

15 tháng 3 2018

\(-\frac{1}{2016}\\ -1;0;2;3\\1 \)