Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(f\left(a\right)=6a^5-10a^4-5a^3+23a^2-29a+2005\)
\(=\left(6a^5-10a^4-2a^3\right)-\left(3a^3-5a^2-a\right)+\left(18a^2-30a-6\right)+2011\)
\(=2a^3\left(3a^2-5a-1\right)-a\left(3a^2-5a-1\right)+6\left(3a^2-5a-1\right)+2011\)
\(=\left(2a^3-a+6\right)\left(3a^2-5a-1\right)+2011\)
Mà \(3a^2-5a-1=0\)
\(\Rightarrow f\left(a\right)=2011\)
Vậy...
Bài 2
\(a,x^3+2x^2+x\)
\(=x.\left(x^2+2x+1\right)\)
\(b,xy+y^2-x-y\)
\(=y.\left(x+y\right)-\left(x+y\right)\)
\(=\left(y-1\right).\left(x+y\right)\)
bài 3
\(a,3x.\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x^2=4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=2,x=-2\end{cases}}\)
vậy x=0,x=2 hay x=-2
\(b,xy+y^2-x-y=0\)
\(y.\left(x+y\right)-\left(x+y\right)=0\)
\(\left(y-1\right).\left(x+y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y-1=0\\x+y=0\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x=-1\end{cases}}}\)
vậy x=-1, y=1
Bạn làm bài kiểm tra hả sao nhiều bài tek. Mk làm mất khá nhiều tg luôn đó
Có một số câu thì mình không làm được. Mong bạn thông cảm!!!
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)
\(a,3x^3y^3-15x^2y^2=3x^2y^2\left(xy-5\right)\)
\(b,5x^3y^2-25x^2y^3+40xy^4\)
\(=5xy^2\left(x^2-5xy+8y^2\right)\)
\(c,-4x^3y^2+6x^2y^2-8x^4y^3\)
\(=-2x^2y^2\left(2x-3+4x^2y\right)\)
\(d,a^3x^2y-\frac{5}{2}a^3x^4+\frac{2}{3}a^4x^2y\)
\(=a^3x^2\left(y-\frac{5}{2}x^2+\frac{2}{3}ay\right)\)
\(e,a\left(x+1\right)-b\left(x+1\right)=\left(x+1\right)\left(a-b\right)\)
\(f,2x\left(x-5y\right)+8y\left(5y-x\right)\)
\(=2x\left(x-5y\right)-8y\left(x-5y\right)=\left(x-5y\right)\left(2x-8y\right)\)
\(g,a\left(x^2+1\right)+b\left(-1-x^2\right)-c\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(a-b-c\right)\)
\(h,9\left(x-y\right)^2-27\left(y-x\right)^3\)
\(=9\left(x-y\right)^2+27\left(x-y\right)^3\)
\(=9\left(x-y\right)^2\left(1+3x-3y\right)\)
a,3x3y3−15x2y2=3x2y2(xy−5)a,3x3y3−15x2y2=3x2y2(xy−5)
b,5x3y2−25x2y3+40xy4b,5x3y2−25x2y3+40xy4
=5xy2(x2−5xy+8y2)=5xy2(x2−5xy+8y2)
c,−4x3y2+6x2y2−8x4y3c,−4x3y2+6x2y2−8x4y3
=−2x2y2(2x−3+4x2y)=−2x2y2(2x−3+4x2y)
d,a3x2y−52a3x4+23a4x2yd,a3x2y−52a3x4+23a4x2y
=a3x2(y−52x2+23ay)=a3x2(y−52x2+23ay)
e,a(x+1)−b(x+1)=(x+1)(a−b)e,a(x+1)−b(x+1)=(x+1)(a−b)
f,2x(x−5y)+8y(5y−x)f,2x(x−5y)+8y(5y−x)
=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)
g,a(x2+1)+b(−1−x2)−c(x2+1)g,a(x2+1)+b(−1−x2)−c(x2+1)
=(x2+1)(a−b−c)=(x2+1)(a−b−c)
h,9(x−y)2−27(y−x)3h,9(x−y)2−27(y−x)3
=9(x−y)2+27(x−y)3
a) ĐKXĐ : 9x2 - 16 # 0
=> ( 3x - 4)( 3x + 4) # 0
=> x # \(\dfrac{4}{3}\); x # \(-\dfrac{4}{3}\)
Vậy,...
b) ĐKXĐ : x2 - 4x + 4 # 0
=> ( x - 2)2 # 0
=> x # 2
Vậy,...
c) ĐKXĐ : x2 - 1# 0
=> x # 1 ; x # -1
vậy,..
d) ĐKXĐ : 2x2 - x # 0
=> x( 2x - 1) # 0
=> x # 0 ; x # \(\dfrac{1}{2}\)
Vậy,...
a,\(\dfrac{x^2-4}{9x^2-16}\)
Phân thức trên được xác định \(\Leftrightarrow9x^2-16\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-4\ne0\\3x+4\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{4}{3}\\x\ne-\dfrac{4}{3}\end{matrix}\right.\)
Vậy...
b,\(\dfrac{2x-1}{x^2-4x+4}\)
Phân thức trên được xác định \(\Leftrightarrow x^2-4x+4\ne0\)
\(\Leftrightarrow\left(x-2\right)^2\ne0\)
\(\Leftrightarrow x-2\ne0\)
\(\Leftrightarrow x\ne2\)
c,\(\dfrac{x^2-4}{x^2-1}\)
Phân thức trên được xác định \(\Leftrightarrow x^2-1\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
Vậy...
d,\(\dfrac{5x-3}{2x^2-x}\)
Phân thức trên được xác định \(\Leftrightarrow2x^2-x\ne0\)
\(\Leftrightarrow x\left(2x-1\right)\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne0\\2x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne0\\x\ne\dfrac{1}{2}\end{matrix}\right.\)
Vậy...
\(a,6x^2-9x=3x\left(x-3\right)\)
\(b,x^3-2x^2-3x+6\)
\(=\left(x^3-2x^2\right)-\left(3x-6\right)\)
\(=x^2\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x^2-3\right)\left(x-2\right)\)
\(e,2x\left(x-y\right)-3y\left(x-y\right)\)
\(=\left(2x-3y\right)\left(x-y\right)\)
a) 6x2 - 9x
= 3x (2x - 3)
b) x3 - 2x2 - 3x + 6
= x2(x - 2) - 3 (x - 2)
=(x - 2) (x2 - 3)
c) x2 - 4x + 4 - 9y2
= (x - 2)2 - 9y2
=(x - 2 - 3y)(x - 2 + 3y)
e) 2x(x - y) - 3y(x - y)
= (x - y)(2x - 3y)
xin lỗi mình học ngu nên không biết làm nhìu nha
Bài làm :
Bài 1 :
\(a,-2x^3y.\left(2x^2-3y+5y^2\right)\)
\(=-4x^5y+6x^3y^2-10x^3y^3\)
\(b,\left(x+1\right)\left(x^2-x+1\right)\)
\(=x^3-x^2+x+x^2-x+1\)
\(=x^3+1\)
\(c,\left(2x-1\right).\left(3x+2\right).\left(3-x\right)\)
\(=\left[\left(2x-1\right)\left(3x+2\right)\right]\left(3-x\right)\)
\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)
\(=18x^2-6x^3+12x-4x^2-9x+3x^2-6+2x\)
\(=-6x^3+\left(18x^2-4x^2+3x^2\right)+\left(12x-9x+2x\right)-6\)
\(=-6x^3+17x^2+5x-6\)
Bài 2 :
\(\left(a+b\right).\left(a^3-a^2b+ab^2-b^3\right)\)
\(=a^4-a^3b+a^2b^2-ab^3+ba^3-a^2b^2+ab^3-b^4\)
\(=a^4+\left(-a^3b+ba^3\right)+\left(a^2b^2-a^2b^2\right)+\left(-ab^3+ab^3\right)-b^4\)
\(=a^4-b^4\)
=> đpcm
Học tốt nha
câu 4:
a) ĐK: x≠ 0
b) \(A=x^2-x+1\)
sa thì sửa
Cúc bạn học tốt
Bài 5:
a: H đối xứng với D qua AB
nên HD vuông góc với AB tại trung điểm của HD
=>AB là phân giác của góc HAD(1)
H đối xứng với E qua AC
nên HE vuông góc với AC tại trung điểm của HE
=>AC là phân giác của góc HAE(2)
Xét tứ giác AIHK có
góc AIH=góc AKH=góc KAI=90 độ
nên AIHK là hình chữ nhật
b: Từ (1), (2) suy ra góc EAD=2*90=180 độ
=>E,A,D thẳng hàng