K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
9 tháng 8 2021

bài 1.

a.\(A=x^2-2xy+y^2+x^2+2xy+y^2=2\left(x^2+y^2\right)\)

b.\(B=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)=4xy\)

c.\(C=4a^2+4ab+b^2-\left(4a^2-4ab+b^2\right)=8ab\)

d.\(D=4x^2-4x+1-2\left(4x^2-12x+9\right)+4=-4x^2+20x-13\)

.bài 2

a.\(A=x^2+6x+9+x^2-9-2\left(x^2-2x-8\right)=10x+16;x=-\frac{1}{2}\Rightarrow A=9\)

b.\(B=9x^2+24x+16-x^2+16-10x=8x^2+14x+32\Rightarrow x=-\frac{1}{10}\Rightarrow B=\frac{767}{25}\)

c.\(C=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2-4\right)=6x-12\Rightarrow x=1\Rightarrow C=-6\)

d.\(D=x^2-9+x^2-4x+4-2x^2+8x=4x-5\Rightarrow x=-1\Rightarrow A=-9\)

9 tháng 8 2021

Trả lời:

Bài 1: Rút gọn biểu thức:

a) A = ( x - y )2 + ( x + y )2

= x2 - 2xy + y2 + x2 + 2xy + y2

= 2x2 + 2y2 

b) B = ( x + y )2 - ( x - y )2 

= x2 + 2xy + y2 - ( x2 - 2xy + y2 )

= x2 + 2xy + y2 - x2 + 2xy - y2

= 4xy

c) C = ( 2a + b )2 - ( 2a - b )2 

= 4a2 + 4ab + b2 - ( 4a2 - 4ab + b2 )

= 4a2 + 4ab + b2 - 4a2 + 4ab - b2 

= 8ab

d) D = ( 2x - 1 )2 - 2 ( 2x - 3 )2 + 4

= 4x2 - 4x + 1 - 2 ( 4x2 - 12x + 9 ) + 4

= 4x2 - 4x + 1 - 8x2 + 24x - 18 + 4

= - 4x2 + 20x - 13

Bài 2: Rút gọn rồi tính giá trị biểu thức:

a) A = ( x + 3 )2 + ( x - 3 )( x + 3 ) - 2 ( x + 2 )( x - 4 )

= x2 + 6x + 9 + x2 - 9 - 2 ( x2 - 2x - 8 ) 

= 2x2 + 6x - 2x2 + 4x + 16

= 10x + 16

Thay x = 1/2 vào A, ta có:

\(A=10.\left(-\frac{1}{2}\right)+16=-5+16=11\)

b) B = ( 3x + 4 )2 - ( x - 4 )( x + 4 ) - 10x

= 9x2 + 24x + 16 - x2 + 16 - 10x 

= 8x2 + 14x + 32

Thay x = - 1/10 vào B, ta có:

\(B=8.\left(-\frac{1}{10}\right)^2+14.\left(-\frac{1}{10}\right)+32=\frac{767}{25}\)

c) C = ( x + 1 )2 - ( 2x - 1 )2 + 3 ( x - 2 )( x + 2 )

= x2 + 2x + 1 - 4x2 + 4x - 1 + 3 ( x2 - 4 )

= - 3x2 + 6x + 3x2 - 12

= 6x - 12

Thay x = 1 vào C, ta có:

\(C=6.1-12=-6\)

d) D = ( x - 3 )( x + 3 ) + ( x - 2 )2 - 2x ( x - 4 ) 

= x2 - 9 + x2 - 4x + 4 - 2x2 + 8x

= 4x - 5

Thay x = - 1 vào D, ta có:

\(D=4.\left(-1\right)-5=-9\)

4 tháng 10 2020

Bài 2 : 

a. A = 2 ( x3 + y3 ) - 3 ( x2 + y2 ) với x + y = 1

=> A = 2 ( x + y ) ( x2 - xy + y2 ) - 3 [ ( x + y )- 2xy ]

=> A = 2 [ ( x + y )- 3xy ] - 3 ( 1 - 2xy )

=> A = 2 ( 1 - 3xy ) - 3 + 6xy

=> A = 2 - 6xy - 3 + 6xy

=> A = - 1

B = x3 + y3 + 3xy với x + y = 1

=> B = ( x+ 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )

=> B = ( x + y )3 - 3xy ( x + y - 1 )

=> B = 13 - 3xy . 0

=> B = 1

4 tháng 10 2020

Bài 1.

a) ( x - 1 )3 + ( 2 - x )( 4 + 2x + x2 ) + 3x( x + 2 ) = 16

<=> x3 - 3x2 + 3x - 1 + 8 - x3 + 3x2 + 6x = 16

<=> 9x + 7 = 16

<=> 9x = 9

<=> x = 1

b) ( x + 2 )( x2 - 2x + 4 ) - x( x2 - 2 ) = 15

<=> x3 + 8 - x3 + 2x = 15

<=> 2x + 8 = 15

<=> 2x = 7

<=> x = 7/2

c) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 9( x + 1 )2 = 15

<=> ( x - 3 )[ ( x - 3 )2 - ( x2 + 3x + 9 ) + 9( x2 + 2x + 1 ) = 15

<=> ( x - 3 )( x2 - 6x + 9 - x2 - 3x - 9 ) + 9x2 + 18x + 9 = 15

<=> ( x - 3 ).(-9x) + 9x2 + 18x + 9 = 15

<=> -9x2 + 27x + 9x2 + 18x + 9 = 15

<=> 45x + 9 = 15

<=> 45x = 6

<=> x = 6/45 = 2/15

d) x( x - 5 )( x + 5 ) - ( x + 2 )( x2 - 2x + 4 ) = 3

<=> x( x2 - 25 ) - ( x3 + 8 ) = 3

<=> x3 - 25x - x3 - 8 = 3

<=> -25x - 8 = 3

<=. -25x = 11

<=> x = -11/25

Bài 2.

a) A = 2( x3 + y3 ) - 3( x2 + y2 )

= 2( x + y )( x2 - xy + y2 ) - 3x2 - 3y2

= 2( x2 - xy + y2 ) - 3x2 - 3y2

= 2x2 - 2xy + 2y2 - 3x2 - 3y2

= -x2 - 2xy - y2

= -( x2 + 2xy + y2 )

= -( x + y )2

= -(1)2 = -1

b) B = x3 + y3 + 3xy 

= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy

= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )

= ( x + y )3 - 3xy( x + y - 1 )

= 13 - 3xy( 1 - 1 )

= 1 - 3xy.0

= 1

Bài 2. Thực hiện phép nhân: a. 3x(4x - 3) - (2x -1)(6x + 5) b. 4x(3x2 - x) - (2x + 3)(6x2 - 3x + 1) c. (x - 2)(1x + 2)(x + 4) Bài 3. Chứng ming rằng: a. (x - y)(x + y) = x2 - y2 b. (x + y)2 = x2 + 2xy + y2 c. (x - y)2 = x2 - 2xy + y2 d. (x + y)(x2 - xy + y2 ) = x3 + y3 e. (x - y)(x3 + x2 y + xy2 + y3 ) = x4 - y4 Bài 4. Tìm x biết: a. 3(2x - 3) + 2(2 - x) = -3 b. 2x(x2 - 2) + x2 (1 - 2x) - x2 = -12 c. 3x(2x + 3) - (2x + 5)(3x - 2) = 8 ...
Đọc tiếp

Bài 2. Thực hiện phép nhân:

a. 3x(4x - 3) - (2x -1)(6x + 5)

b. 4x(3x2 - x) - (2x + 3)(6x2 - 3x + 1)

c. (x - 2)(1x + 2)(x + 4)

Bài 3. Chứng ming rằng:

a. (x - y)(x + y) = x2 - y2 b. (x + y)2 = x2 + 2xy + y2

c. (x - y)2 = x2 - 2xy + y2 d. (x + y)(x2 - xy + y2 ) = x3 + y3

e. (x - y)(x3 + x2 y + xy2 + y3 ) = x4 - y4

Bài 4. Tìm x biết:

a. 3(2x - 3) + 2(2 - x) = -3 b. 2x(x2 - 2) + x2 (1 - 2x) - x2 = -12

c. 3x(2x + 3) - (2x + 5)(3x - 2) = 8 d. 4x(x -1) - 3(x2 - 5) - x2 = (x - 3) - (x + 4)

e. 2(3x -1)(2x + 5) - 6(2x -1)(x + 2) = -6

Bài 5. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào x:

a. A = 2x(x -1) - x(2x + 1) - (3 - 3x) b. B = 2x(x - 3) - (2x - 2)(x - 2)

c. C = (3x - 5)(2x +11) - (2x + 3)(3x + 7) d. D = (2x +11)(3x - 5) - (2x + 3)(3x + 7)

Bài 6. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào y:

P = (2x - y)(4x2 + 2xy + y2 ) + y3

các bạn ơi giúp mình nha

3
8 tháng 3 2019

xuống lớp 1 học bạn ơi

13 tháng 8 2019

Bn nên ra từng bài ra vậy ai làm cho . hum

11 tháng 10 2020

a) \(x^4-2x^2+1=\left(x^2-1\right)^2=\left(x-1\right)^2\left(x+1\right)^2\)

b) \(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)

c) \(2x^3-x^2-8x+4\)

\(=x^2\left(2x-1\right)-4\left(2x-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(2x-1\right)\)

d) \(x\left(x-y\right)^2+y\left(x-y\right)^2-xy+x^2\)

\(=\left(x+y\right)\left(x-y\right)^2+x\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-y^2+x\right)\)

e) \(2x^2-5x+2\)

\(=\left(2x^2-x\right)-\left(4x-2\right)\)

\(=x\left(2x-1\right)-2\left(2x-1\right)\)

\(=\left(x-2\right)\left(2x-1\right)\)

21 tháng 10 2018

Giải hết không nổi =.= đành giải vài bài thôi :v . Lần sau bạn nên đăng từ từ để người giải bớt ngán nhé!

Bài 1

a) \(2\left(x+5\right)=x^2+5x\)

\(\Leftrightarrow2x+10=x^2+5x\)

\(\Leftrightarrow x^2+5x-2x=10\)

\(\Leftrightarrow x^2+3x=10\Leftrightarrow x\left(x+3\right)=10\Leftrightarrow\hept{\begin{cases}x=-5\\x=2\end{cases}}\) (ở đây lười kẻ bảng quá =((( )

b) \(x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow x^2-2x+x=2\Leftrightarrow x^2-x=2\)

\(\Leftrightarrow x\left(x-1\right)=2\Leftrightarrow\hept{\begin{cases}x=-1\\x=2\end{cases}}\) (bạn kẻ bảng ra các ước của 2 là thấy)

21 tháng 10 2018

:v lời giải bài 1 đang chờ duyệt. Mình giải tiếp bài 2

Bài 2

a) \(2x\left(x^2-3\right)=2x^3-6x\)

b) \(x\left(x^2-2x+5\right)=x^3-2x^2+5x\)

c) \(\left(x+2y\right)\left(x+2y^2-5xy\right)\)

\(=x\left(x+2y^2-5xy\right)+2y\left(x+2y^2-5xy\right)\)

\(=x^2+2xy^2-5x^2y+2xy+4y^3-10xy^2\)

\(=4y^3+x^2-8xy^2-5x^2y+2xy\)

d)Tương tự bài c)

4 tháng 9 2019

\(1a,P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right).\)

\(=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24=0\)

\(b,Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6\left(x^2-1\right)\)

\(=-6x^2-2+6x^2-6=-8\)