K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2017

Ta có :

M = \(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

M = \(\frac{1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{91}+1\right)+...+\left(\frac{98}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

M = \(\frac{\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

M = \(\frac{100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

M = \(100\)

N = \(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)

N = \(\frac{\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+\left(1-\frac{3}{11}\right)+...+\left(1-\frac{92}{100}\right)}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)

N = \(\frac{\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)

N = \(\frac{8.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}{\frac{1}{5}.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}\)

N = \(40\)

\(\Rightarrow\)M : N = \(\frac{100}{40}\%=250\%\)

1 tháng 6 2017

thiếu đề r bn

14 tháng 3 2018

Giup tui voi !!!!!!!!!!!!!!!!!!!!!!!!!!! Mai phai nop roi !!!!!!!!!!!!!!!!!!!

28 tháng 1 2020

Xin lỗi, mình chỉ làm được câu 1 thôi

\(A=\frac{1}{7}\left(\frac{555}{222}+\frac{4444}{12221}+\frac{33333}{244442}+\frac{11}{330}+\frac{13}{60}\right)\)

\(A=\frac{1}{7}\left(\frac{5.111}{2.111}+\frac{4.1111}{11.1111}+\frac{3.11111}{22.11111}+\frac{11}{11.30}+\frac{13}{60}\right)\)

\(A=\frac{1}{7}\left(\frac{5}{2}+\frac{4}{11}+\frac{3}{22}+\frac{1}{30}+\frac{13}{60}\right)\)

\(A=\frac{1}{7}\left[\left(\frac{5}{2 }+\frac{1}{30}+\frac{13}{60}\right)+\left(\frac{4}{11}+\frac{3}{22}\right)\right]\)

\(A=\frac{1}{7}\left[\left(\frac{150}{60}+\frac{2}{60}+\frac{13}{60}\right)+\left(\frac{8}{22}+\frac{3}{22}\right)\right]\)

\(A=\frac{1}{7}\left(\frac{11}{4}+\frac{1}{2}\right)\)

\(A=\frac{1}{7}.\frac{13}{4}\)

\(A=\frac{13}{21}\)

8 tháng 3 2019

Mk ko biết lm nhưng cứ k thoải mái nha

SORRY

Tính giá trị biểu thức :1. \(A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\) 2. \(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)3. \(C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)4. \(D=(\frac {150}{1111}+\frac{5}{75}-\frac{14}{77})(\frac{1}{5}-\frac{1}{6}-\frac{1}{30})...
Đọc tiếp

Tính giá trị biểu thức :

1. \(A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\) 

2. \(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)

3. \(C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)

4. \(D=(\frac {150}{1111}+\frac{5}{75}-\frac{14}{77})(\frac{1}{5}-\frac{1}{6}-\frac{1}{30}) \)

5. Cho \(M=8\frac{2}{7}-\left(3\frac{4}{9}+3\frac{9}{7}\right);N=\left(10\frac{2}{9}+2\frac{3}{5}\right)-6\frac{2}{9}\). Tính \(P=M-N\)

6. \(E=10101\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)

7. \(F=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{64}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

8. \(G=\left[\frac{\left(6-4\frac{1}{2}\right):0,03}{\left(3\frac{1}{20}-2,65\right).4+\frac{2}{5}}-\frac{\left(0,3-\frac{3}{20}\right).1\frac{1}{2}}{\left(1,88+2\frac{3}{25}\right).\frac{1}{80}}\right]:\frac{49}{60}\)

9. \(H=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{4.5.6}+...+\frac{1}{98.99.100}\)

10. \(I=\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.....\frac{2499}{2500}\)

11. \(k=\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{999}\right)\)

12. \(L=1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}...\)(98 thừa số)

13. \(M=-2+\frac{1}{-2+\frac{1}{-2+\frac{1}{-2+\frac{1}{3}}}}\)

14. \(N=\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{26}{7}-\frac{13}{11}+\frac{13}{23}}\)

15. \(P=\left(\frac{1}{4}-1\right)\left(\frac{1}{5}-1\right)...\left(\frac{1}{2000}-1\right)\left(\frac{1}{2001}-1\right)\)

16. \(Q=\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2005.2006}\right):\left(\frac{1}{1004.2006}+\frac{1}{1005.2005}+...+\frac{1}{2006.1004}\right)\)

3
2 tháng 5 2018

\(1)A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\)

\(=\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}\)

\(=\frac{2}{4}=\frac{1}{2}\)

\(2)B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)

\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}.\frac{4.4}{4.5}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)

\(=\frac{1.2.3.4}{2.3.4.5}=\frac{1}{5}\)

\(3)C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)

\(=\frac{2.2.3.3.4.4.5.5}{1.3.2.4.3.5.4.6}\)

\(=\frac{2.5}{1.6}=\frac{2.5}{1.3.2}=\frac{5}{3}\)

\(4)D=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{1}{5}-\frac{1}{6}-\frac{1}{30}\right)\)

\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{6}{30}-\frac{5}{30}-\frac{1}{30}\right)\)

\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right).0=0\)

\(5)M=8\frac{2}{7}-\left(3\frac{4}{9}+3\frac{9}{7}\right)\)               \(N=\left(10\frac{2}{9}+2\frac{3}{5}\right)-6\frac{2}{9}\)

\(=\frac{58}{7}-\left(\frac{31}{9}+\frac{30}{7}\right)\)                         \(=\left(\frac{92}{9}+\frac{13}{5}\right)-\frac{56}{9}\)

\(=\frac{58}{7}-\left(\frac{217}{63}+\frac{270}{63}\right)\)                     \(=\left(\frac{460}{45}+\frac{117}{45}\right)-\frac{280}{45}\)

\(=\frac{58}{7}-\frac{487}{63}\)                                          \(=\frac{577}{45}-\frac{280}{45}\)

\(=\frac{522}{63}-\frac{487}{63}=\frac{5}{9}\)                             \(=\frac{33}{5}\)

\(P=M-N\)

\(\Rightarrow P=\frac{5}{9}-\frac{33}{5}\)

\(\Rightarrow P=\frac{25}{45}-\frac{297}{45}\)

\(\Rightarrow P=\frac{-272}{45}\)

Vậy P = \(\frac{-272}{45}\)

\(6)E=10101\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)

\(=\frac{5}{11}+\frac{5}{22}-\left(10101.\frac{4}{111111}\right)\)

\(=\frac{10}{22}+\frac{5}{22}-\frac{4}{11}\)

\(=\frac{15}{22}-\frac{8}{22}=\frac{7}{22}\)

\(7)F=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{64}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

\(=\frac{1\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}{2\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}.\frac{3\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{256}+\frac{1}{64}\right)}{1\left(1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}\right)}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{16}{64}-\frac{4}{64}+\frac{1}{64}-\frac{1}{256}\right)}{1\left(\frac{64}{64}-\frac{16}{64}+\frac{4}{64}-\frac{1}{64}\right)}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{13}{64}-\frac{1}{256}\right)}{1.\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{52}{256}-\frac{1}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3\left(\frac{51}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{\frac{153}{256}}{\frac{51}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{153}{256}:\frac{51}{64}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{3}{4}+\frac{5}{8}\)

\(=\frac{3}{8}+\frac{5}{8}=1\)

Xin lỗi tớ đã làm hết buổi tối mà chỉ có 7 bài mong bạn thông cảm cho mình nhé !

9 tháng 2 2018
sao không tự làm một số bài dễ đi
25 tháng 3 2020

1, =\(\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}=\frac{1}{2}\)

2, A=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)

\(\frac{1\cdot2\cdot3\cdot....\cdot99}{2\cdot3\cdot4\cdot...\cdot100}=\frac{1}{100}\)

Vậy ......

hok tốt

19 tháng 4 2020

\(B=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)

\(=\frac{\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+....+\left(1-\frac{92}{100}\right)}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)(có 92 số 1)

\(=\frac{\frac{8}{9}+\frac{8}{10}+....+\frac{8}{100}}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+....+\frac{1}{100}\right)}=\frac{8\left(\frac{1}{9}+\frac{1}{10}+....+\frac{1}{100}\right)}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+....+\frac{1}{100}\right)}\)

\(=8:\frac{1}{5}=40\)

19 tháng 4 2020

\(B\)\(=\)\(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}....+\frac{1}{500}}\)

Tham khảo bài làm bn Đàm đi

Hok tốt

21 tháng 7 2019

Bài 1:

1) \(\frac{11}{3}\): 3\(\frac{1}{3}\)- 3

\(\frac{11}{3}\)\(\frac{10}{3}\)- 3

\(\frac{11}{3}\)\(\frac{3}{10}\)- 3 

\(\frac{11}{10}\)- 3

\(\frac{-19}{10}\)

2) \(\frac{5}{6}\):  \(\frac{3}{52}\) - \(\frac{5}{6}\). 47\(\frac{1}{3}\)

\(\frac{5}{6}\) . \(\frac{52}{3}\)\(\frac{5}{6}\). 47\(\frac{1}{3}\)

\(\frac{5}{6}\).(\(\frac{52}{3}\)- 47\(\frac{1}{3}\))

\(\frac{5}{6}\).( -30)

= -25

21 tháng 7 2019

mách mình mấy câu kia với