Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)hình như đề sai thì phải
sửa lại
\(\left(\dfrac{1}{7}-\dfrac{2}{5}\right).\dfrac{2016}{2017}+\left(\dfrac{13}{7}+\dfrac{2}{5}\right).\dfrac{2016}{2017}\)
=\(\dfrac{2016}{2017}.\left(\dfrac{1}{7}-\dfrac{2}{5}+\dfrac{13}{7}+\dfrac{2}{5}\right)\)
=\(\dfrac{2016}{2017}.2=\dfrac{4032}{2017}\)
a) \(\dfrac{15}{34}+\dfrac{7}{21}+\dfrac{19}{34}+\dfrac{2}{3}-1\dfrac{15}{17}\)
\(=\left(\dfrac{15}{34}+\dfrac{19}{34}\right)+\left(\dfrac{7}{21}+\dfrac{2}{3}\right)-1\dfrac{15}{17}\)
\(=1+1-1\dfrac{15}{17}=\dfrac{2}{17}\)
Đăng từng bài một thôi bạn!
1)\(\left(-\dfrac{5}{13}\right)^{2017}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(-\dfrac{5}{13}\right)^{2016}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(\dfrac{5}{13}\right)^{2016}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(\dfrac{5}{13}.\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).1^{2016}\)
\(=-\dfrac{5}{13}\)
a: \(\dfrac{x+1}{5}+\dfrac{x+1}{6}=\dfrac{x+1}{7}+\dfrac{x+1}{8}\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}-\dfrac{1}{8}\right)=0\)
=>x+1=0
hay x=-1
b: \(\Leftrightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)
=>x-2010=0
hay x=2010
c: \(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\dfrac{x}{\left(x+2\right)\left(x+17\right)}=\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}\)
=>x=15
Câu 2:
\(B=\dfrac{5^{21}\cdot\left(2\cdot5-9\right)}{5^{20}}\cdot\dfrac{7^{15}\left(7+3\right)}{15\cdot7^{15}-95\cdot7^{14}}\)
\(=\dfrac{5\cdot1}{1}\cdot\dfrac{7^{15}\cdot10}{7^{14}\cdot\left(15\cdot7-95\right)}\)
\(=5\cdot\dfrac{7\cdot10}{105-95}=5\cdot7=35\)
Cái này dễ lắm. Mình giải luôn nhé!
a) \(\left[{}\begin{matrix}\dfrac{1}{7}x-\dfrac{2}{7}=0\Leftrightarrow x=\dfrac{2}{7}:\dfrac{1}{7}\Leftrightarrow x=2\\-\dfrac{1}{5}x+\dfrac{3}{5}=0\Leftrightarrow x=-\dfrac{3}{5}:\left(-\dfrac{1}{5}\right)\Leftrightarrow x=3\\\dfrac{1}{3}x+\dfrac{4}{3}=0\Leftrightarrow x=-\dfrac{4}{3}:\dfrac{1}{3}\Leftrightarrow x=-4\end{matrix}\right.\)
Vậy x=2 hoặc x=3 hoặc x=-4
b)\(x\left(\dfrac{1}{6}+\dfrac{1}{10}-\dfrac{4}{15}\right)+1=0\)
\(x.0+1=0\)
\(1=0\) ( vô lí)
Vậy không có giá trị của x nào thỏa mãn
a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (1)
\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)
Từ (1) và (2) suy ra: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
b.M = \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{50^2}\right)\)
= \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{2499}{2500}\)
= \(\dfrac{1.3.2.4.3.5...49.51}{2^2.3^2.4^2...50^2}\)
\(\dfrac{51}{2.50}=\dfrac{51}{100}\)
Lời giải:
a)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow \left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2=\frac{(a+c)^2}{(b+d)^2}(1)\)
Mặt khác, \(\frac{a}{b}=\frac{c}{d}\Rightarrow \frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}(2)\) (áp dụng tính chất dãy tỉ số bằng nhau)
Từ \((1),(2)\Rightarrow \frac{(a+c)^2}{(b+d)^2}=\frac{a^2+c^2}{b^2+d^2}\)
b) Vì \(1-\frac{1}{2^2};1-\frac{1}{3^2};...;1-\frac{1}{50^2}<1\) nên:
\(\left\{\begin{matrix} \left \{ 1-\frac{1}{2^2} \right \}=1-\frac{1}{2^2}\\ \left \{ 1-\frac{1}{3^2} \right \}=1-\frac{1}{3^2}\\ ....\\ \left \{ 1-\frac{1}{50^2} \right \}=1-\frac{1}{50^2}\end{matrix}\right.\)
\(\Rightarrow M=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{50^2}\right)\)
\(\Leftrightarrow M=\frac{(2^2-1)(3^2-1)(4^2-1)....(50^2-1)}{(2.3....50)^2}\)
\(\Leftrightarrow M=\frac{[(2-1)(3-1)...(50-1)][(2+1)(3+1)...(50+1)]}{(2.3.4...50)^2}\)
\(\Leftrightarrow M=\frac{(2.3...49)(3.4.5...51)}{(2.3.4...50)^2}=\frac{(2.3.4...49)^2.50.51}{2.(2.3....49)^2.50^2}=\frac{50.51}{2.50^2}=\frac{51}{100}\)
e) 3-1.3n+6.3n-1=7.36
<=>3n-1+6.3n-1=7.36
<=>3n-1.7=7.36
=>3n-1=36=>n-1=6=>n=7
\(3^4< \dfrac{1}{9}.27^n< 3^{10}< =>3^6.\dfrac{1}{9}< 3^{3n}.\dfrac{1}{9}< 3^{12}.\dfrac{1}{9}\)
\(< =>3^6< 3^{3n}< 3^{12}=>6< 3n< 12\)
\(< =>2< n< 4=>n=3\)
Bài1:
Giải 1 câu các câu sau tương tự
1.A=|x|+1
Với mọi x thì |x|>=0
=>|x|+1 >=1
Hay A>=1
Để A=1 thì |x|=0
=>x=0
Vậy...
Bài2:
1.A=−|x−2|+7
Với mọi x thì −|x−2|nhỏ hơn bằng 0
=>−|x−2|+7 nhỏ hơn bằng 7
Hay A nhỏ hơn bằng 7
Để A=7 thì |x−2|=0
=>x-2=0=>x=2
Các câu sau tương tự
1) \(A=\left|x\right|+1\ge1\forall x\)
\(\Rightarrow GTNN\) của A là 1 khi \(\left|x\right|=0\Leftrightarrow x=0\)
vậy GTNN của A là 1 khi \(x=0\)
2) \(B=\left|x+1\right|-\dfrac{7}{3}\ge-\dfrac{7}{3}\forall x\)
\(\Rightarrow GTNN\) của B là \(-\dfrac{7}{3}\) khi \(\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
vậy GTNN của B là \(-\dfrac{7}{3}\) khi \(x=-1\)
3) \(C=\dfrac{2}{5}\left|2x+5\right|-2\ge-2\forall x\)
\(\Rightarrow GTNN\) của C là -2 khi \(\left|2x+5\right|=0\Leftrightarrow2x+5=0\Leftrightarrow2x=-5\Leftrightarrow x=-\dfrac{5}{2}\)
vậy GTNN của C là -2 khi \(x=-\dfrac{5}{2}\)
1b. Ta thấy \(225-15^2=0\)
Mọi số nhân với 0 đều = 0
=> \(2017^0=1\)
2.
\(A=\dfrac{2.5^{22}-9.5^{21}}{25^{10}}:\dfrac{5\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}=\dfrac{5^{21}\left(2.5-9\right)}{5^{20}}:\dfrac{5.7^{14}\left(3.7-19\right)}{7^{15}\left(7+3\right)}=5.1:\dfrac{5.7^{14}.2}{7^{15}.10}=5:\dfrac{1}{7}=35\)