Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{2n-1}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2n}\right)=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2n-1}+\frac{1}{2n}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2n}\right)=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n-1}+\frac{1}{2n}-\frac{1}{1}-\frac{1}{2}-....-\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n+2}+....+\frac{1}{2n}\left(\text{đpcm}\right)\)
a) Hình như nhầm đề thì phải :v
\(P=\dfrac{\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}}{\dfrac{5}{12}+1-\dfrac{6}{11}}\)
\(=\dfrac{\dfrac{5}{12}+\dfrac{5}{11}}{\dfrac{5}{12}+\dfrac{5}{11}}=1\)
b) \(Q=\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{0,375-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)
\(Q=\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{3\left(0,125-\dfrac{1}{5}+\dfrac{1}{7}\right)}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)
\(Q=\dfrac{1}{3}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)
\(Q=\dfrac{1}{3}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{2}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{3}\right)}=\dfrac{1}{3}+\dfrac{1}{\dfrac{3}{2}}\)
\(Q=\dfrac{1}{3}+\dfrac{2}{3}=1\)
a,\(P=\dfrac{\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}}{\dfrac{5}{12}+1-\dfrac{7}{11}}=\dfrac{\left(\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}\right).132}{\left(\dfrac{5}{12}+1-\dfrac{7}{11}\right).132}=\dfrac{88-33+60}{55+132-84}=\dfrac{115}{103}\)
b, Ta có : 0,125 = \(\dfrac{1}{8}\) ; 0,375 = \(\dfrac{3}{8}\) ; 0,2 = \(\dfrac{1}{5}\) ; 0,5 = \(\dfrac{3}{6}\)
\(Q=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{\dfrac{3}{8}-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{4}+\dfrac{3}{6}-\dfrac{3}{10}}\)
\(Q=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{3\cdot\left(\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}\right)}+\dfrac{2\cdot\left(\dfrac{1}{4}+\dfrac{1}{6}-\dfrac{1}{10}\right)}{3\cdot\left(\dfrac{1}{4}+\dfrac{1}{6}-\dfrac{1}{10}\right)}\)
\(Q=\dfrac{1}{3}+\dfrac{2}{3}=1\)
a: \(=\dfrac{4\cdot2+4\cdot9}{55}+\dfrac{5}{6}=\dfrac{4}{5}+\dfrac{5}{6}=\dfrac{49}{30}\)
b: \(=\dfrac{3}{2}\cdot\dfrac{3}{5}-\left(\dfrac{3}{7}+\dfrac{3}{20}\right)\cdot\dfrac{10}{3}\)
\(=\dfrac{9}{10}-\dfrac{81}{140}\cdot\dfrac{10}{3}\)
\(=\dfrac{9}{10}-\dfrac{27}{14}=\dfrac{-36}{35}\)
c: \(=15+\dfrac{3}{13}-3-\dfrac{4}{7}-8-\dfrac{3}{13}\)
\(=4-\dfrac{4}{7}=\dfrac{24}{7}\)
d: \(=\dfrac{-7}{9}\left(\dfrac{4}{11}+\dfrac{7}{11}\right)+5+\dfrac{7}{9}=5\)
a: \(\Leftrightarrow\dfrac{8}{5}+\dfrac{2}{5}\cdot x=\dfrac{16}{5}\)
=>2/5x=8/5
=>x=4
b: \(\Leftrightarrow\left(\dfrac{1}{24}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{26}+...+\dfrac{1}{39}-\dfrac{1}{40}\right)\cdot120+\dfrac{1}{3}x=-4\)
\(\Leftrightarrow x\cdot\dfrac{1}{3}+2=-4\)
=>1/3x=-6
=>x=-18
c: =>2|x-1/3|=0,24-4/5=-0,56<0
a, \(4\dfrac{5}{37}\)-\(3\dfrac{4}{5}\)+ \(8\dfrac{15}{29}\)- \(3\dfrac{5}{37}\)+ \(6\dfrac{14}{29}\)
=(\(4\dfrac{5}{37}\)-\(3\dfrac{5}{37}\))+(\(8\dfrac{15}{29}\)+\(6\dfrac{14}{29}\))-\(3\dfrac{4}{5}\)
=(4-3)+(\(\dfrac{5}{37}\)-\(\dfrac{5}{37}\))+(8+6)+(\(\dfrac{15}{29}\)+\(\dfrac{14}{29}\))-3\(\dfrac{4}{5}\)
=1+ 15-\(3\dfrac{4}{5}\)=13-\(\dfrac{4}{5}\)=\(\dfrac{61}{5}\)
b, 60\(\dfrac{7}{13}\)+ 50\(\dfrac{8}{13}\)-11\(\dfrac{2}{13}\)
=(60+50-11)+(\(\dfrac{7}{13}\)+ \(\dfrac{8}{13}\)-\(\dfrac{2}{13}\))
=99+1=100
c, đáp án bằng \(\dfrac{-2}{3}\). bạn tự tính nha
a) \(6\dfrac{5}{7}-\left(1\dfrac{3}{4}+2\dfrac{5}{7}\right)\)
\(=6\dfrac{5}{7}-1\dfrac{3}{4}-2\dfrac{5}{7}\)
\(=\left(6\dfrac{5}{7}-2\dfrac{5}{7}\right)-1\dfrac{3}{4}\)
\(=4-1\dfrac{3}{4}\)
\(=3\dfrac{3}{4}\)
b) \(7\dfrac{5}{11}-\left(2\dfrac{3}{7}+3\dfrac{5}{11}\right)\)
\(=7\dfrac{5}{11}-2\dfrac{3}{7}-3\dfrac{5}{11}\)
\(=\left(7\dfrac{5}{11}-3\dfrac{5}{11}\right)-2\dfrac{3}{7}\)
\(=4-2\dfrac{3}{7}\)
\(=2\dfrac{3}{7}\)
\(D=\dfrac{1}{2}+\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{1}{6}+\dfrac{-3}{35}+\dfrac{1}{3}+\dfrac{1}{41}\)
\(D=\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{-3}{35}\right)+\dfrac{1}{41}\)
\(D=1+-1+\dfrac{1}{41}\)
\(D=0+\dfrac{1}{41}\)
\(D=\dfrac{1}{41}\)
\(C=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)+\left(\dfrac{-3}{4}+\dfrac{-1}{36}+\dfrac{-2}{9}\right)+\dfrac{1}{57}\)
\(=\dfrac{5+9+1}{15}+\dfrac{-27-1-8}{36}+\dfrac{1}{57}\)
=1/57
\(E=\left(-\dfrac{1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{4}{35}+\dfrac{2}{7}\right)+\dfrac{1}{127}=\dfrac{1}{127}\)
Bài 1: Tìm x biết:
a) \(\dfrac{6}{5}-2\left|1-3x\right|=1\dfrac{2}{3}\)
\(2\left|1-3x\right|=\dfrac{6}{5}-1\dfrac{2}{3}\)
\(2\left|1-3x\right|=\dfrac{-7}{15}\)
\(\left|1-3x\right|=\dfrac{-7}{15}:2\)
\(\left|1-3x\right|=\dfrac{-7}{30}\)
\(\left|1-3x\right|\in N\) nhưng \(\dfrac{-7}{30}\notin N\)
\(\Rightarrow x=\varnothing\)
b) \(\left(2,8x+50\right):\dfrac{-3}{2}=51\)
\(\left(2,8x+50\right)=51.\dfrac{-3}{2}\)
\(2,8x+50=\dfrac{-153}{2}\)
\(2,8x=\dfrac{-153}{2}-50\)
\(2,8x=\dfrac{-253}{2}\)
\(x=\dfrac{-253}{2}:2,8\)
\(x=\dfrac{-1265}{28}\)
c) \(\dfrac{x-2}{-2}=\dfrac{x+4}{3}\)
\(\Rightarrow\left(x-2\right).3=-2.\left(x+4\right)\)
\(x.3-2.3=\left(-2\right).x+\left(-2\right).4\)
\(3x-6=\left(-2\right)x+\left(-8\right)\)
\(3x-\left(-2\right)x=6+\left(-8\right)\)
\(5x=-2\)
\(x=\left(-2\right):5\)
\(x=\dfrac{-2}{5}\)
d) \(4\left(3-2x\right)-5\left(x-1\right)=12\)
\(4.3-4.2x-5x+5.1=12\)
\(12-8x-5x+5=12\)
\(12+\left(-8\right)x+\left(-5\right)x+5=12\)
\(12+\left(-13\right)x+5=12\)
\(\left(-13\right)x=12-12-5\)
\(\left(-13\right)x=-5\)
\(x=\left(-5\right):\left(-13\right)\)
\(x=\dfrac{5}{13}\)
Bài 2: Chứng minh:
\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)
\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\) (đpcm)
a: \(=\left(\dfrac{19}{6}-\dfrac{2}{5}\right):\left(\dfrac{29}{6}+\dfrac{7}{10}\right)\)
\(=\dfrac{19\cdot5-2\cdot6}{30}:\dfrac{290+42}{30}=\dfrac{83}{332}=\dfrac{1}{4}\)
b: \(=\dfrac{\left(\dfrac{102}{25}-\dfrac{2}{25}\right)\cdot\dfrac{17}{4}}{\left(6+\dfrac{5}{9}-3-\dfrac{1}{4}\right)\cdot\dfrac{16}{7}}\)
\(=\dfrac{4\cdot\dfrac{17}{4}}{\dfrac{16}{7}\cdot\dfrac{119}{36}}=\dfrac{17}{\dfrac{68}{9}}=17\cdot\dfrac{9}{68}=\dfrac{9}{4}\)
c: \(=\left(\dfrac{120}{60}-\dfrac{15}{60}+\dfrac{20}{60}-\dfrac{36}{60}\right):\left(\dfrac{45}{15}-\dfrac{3}{15}-\dfrac{25}{15}\right)\)
\(=\dfrac{89}{60}:\dfrac{17}{15}=\dfrac{89}{60}\cdot\dfrac{15}{17}=\dfrac{89}{68}\)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{50}}\)
\(3.A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{49}}\)
\(2A=3A-A=1-\dfrac{1}{3^{49}}\)
\(\Rightarrow A=\dfrac{1-\dfrac{1}{3^{50}}}{2}\)
\(B=\dfrac{5}{3}+\dfrac{5}{3^2}+...+\dfrac{5}{3^{50}}=5\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{50}}\right)\)
Căn cứ vào câu A thì các trong ngặc bằng \(\dfrac{1-\dfrac{1}{3^{50}}}{2}\)
suy ra \(B=\dfrac{5\left(1-\dfrac{1}{3^{50}}\right)}{2}\)
tick mik nha
hoi kho day