Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}+0+0+0+0\)
\(=\frac{8}{27}\)
Ta có : \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.....+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}\)
\(=\frac{8}{27}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2021.2022}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)
\(B=\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{107.111}\)
\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{107}-\dfrac{1}{111}\)
\(=\dfrac{1}{3}-\dfrac{1}{111}=\dfrac{12}{37}\)
\(A=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)
\(A=\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\)
\(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\)
\(A=2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)
\(A=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(A=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(A=2.\dfrac{3}{16}\)
\(A=\dfrac{3}{8}\)
\(B=\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{107.111}\)
\(B=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{107}-\dfrac{1}{111}\)
\(B=\dfrac{1}{3}-\dfrac{1}{111}\)
\(B=\dfrac{12}{37}\)
a: \(=\dfrac{1}{4}\cdot\dfrac{12}{5}\cdot\dfrac{100}{7}\cdot\dfrac{49}{100}\)
\(=\dfrac{1}{4}\cdot\dfrac{12}{5}\cdot\dfrac{49}{7}=\dfrac{3}{5}\cdot7=\dfrac{21}{5}\)
b: \(=\dfrac{3}{8}+\dfrac{1}{8}\cdot\dfrac{3}{4}-\dfrac{5}{4}\)
\(=\dfrac{12}{32}+\dfrac{3}{32}-\dfrac{40}{32}=\dfrac{-25}{32}\)
c: \(=\dfrac{4}{9}\left(\dfrac{-13}{27}-\dfrac{14}{27}\right)-\dfrac{5}{9}=\dfrac{-4}{9}-\dfrac{5}{9}=-1\)
d: \(=\dfrac{2}{4}\left(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+...+\dfrac{4}{91\cdot95}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{91}-\dfrac{1}{95}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{92}{285}=\dfrac{46}{285}\)
Lời giải:
\(A=\frac{2}{11.15}+\frac{2}{15.19}+\frac{2}{19.23}+...+\frac{2}{51.55}\)
\(\Rightarrow 2A=\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+...+\frac{4}{51.55}\)
\(=\frac{15-11}{11.15}+\frac{19-15}{15.19}+\frac{23-19}{19.23}+....+\frac{55-51}{51.55}\)
\(=\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+...+\frac{1}{51}-\frac{1}{55}\)
\(=\frac{1}{11}-\frac{1}{55}=\frac{4}{55}\)
\(\Rightarrow A=\frac{2}{55}\)
\(A=\dfrac{-5}{3}\cdot\dfrac{11}{2}\cdot\dfrac{4}{3}=\dfrac{-20\cdot11}{2\cdot9}=\dfrac{-110}{9}\)
\(B=\dfrac{2}{4}\left(\dfrac{4}{11\cdot15}+\dfrac{4}{15\cdot19}+...+\dfrac{4}{51\cdot55}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{19}+...+\dfrac{1}{51}-\dfrac{1}{55}\right)\)
=1/2*4/55
=2/55
\(\dfrac{5}{3\cdot7}+\dfrac{5}{7\cdot11}+\dfrac{5}{11\cdot15}+...+\dfrac{5}{\left(4n-1\right)\left(4n+3\right)}\\ =\dfrac{5}{4}\cdot\left(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\\ =\dfrac{5}{4}\cdot\dfrac{4n}{12n+9}\\ =\dfrac{5n}{12n+9}\)
Mk thực sự nghĩ đề hình như bị sai hay sao ấy!
\(K=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{85}-\dfrac{1}{89}\right)\)
\(=\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{89}\right)=\dfrac{5}{4}\cdot\dfrac{86}{267}=\dfrac{215}{534}\)
\(\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{23.27}\)
= \(4.\left(\text{}\text{}\text{}\text{}\text{}\text{}\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{23.27}\right)\)
=\(1.\left(\dfrac{1}{3.7}+\dfrac{1}{7.11}+...+\dfrac{1}{23.27}\right)\)
= \(1.\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{23}-\dfrac{1}{27}\right)\)
=\(1.\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\)
=\(1.\left(\dfrac{9}{27}-\dfrac{1}{27}\right)\)
= \(1.\dfrac{8}{27}\)
= \(\dfrac{8}{27}\)