K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2017

Cụ thể mức nào nhỉ tất cả dự trên HĐT \(\left(a+-b\right)^2=a^2+-2ab+b^2\)

cụ thể con A

\(A=x^2-2.\frac{5}{2}x+\left(\frac{5^2}{2^2}\right)+8-\frac{25}{4}\) đã thêm 25/4 =b vào phần đầu => trừ đi 

\(A=\left(x-\frac{5}{2}\right)^2+8-\frac{25}{4}=\left(x-\frac{5}{2}\right)^2+\frac{7}{4}\)

\(\left(x-\frac{5}{2}\right)^2\ge0\Rightarrow A\ge\frac{7}{4}\)đẳng thức khi x-5/2=0=> x=5/2

18 tháng 1 2017

A=(x-5/2)^2+8-25/4=> Amin=7/4 khi x=5/2

B --> xem lại theo đề Bmin =5 khi x=0

C =8+25-(2x+5)^2=> C max=32 khi x=-5/2

D max=9 khi x=0

18 tháng 1 2017

\(A_{min}=8-\frac{25}{4}\) khi x=5/2

Bmin=xem lại đề đúng như đề Bmin=5 khi x=0

C=8+25-(2x+5)^2

Cmax=8+25 khi x=-5/2 

Dmax=9 khi x=0

23 tháng 12 2015

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

29 tháng 11 2017

Câu 1:

\(A=x^2-3x+9\\ =x^2-3x+\dfrac{9}{4}+\dfrac{27}{4}\\ =\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{27}{4}\\ =\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\\ Do\text{ }\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\\ \Rightarrow A=\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge0\forall x\\ \text{Dấu “=” xảy ra khi: }\\ \left(x-\dfrac{3}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{3}{2}=0\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\text{ }A_{\left(Min\right)}=\dfrac{27}{4}\text{ }khi\text{ }x=\dfrac{3}{2}\)

\(B=9x^2-6x+2\\ =9x^2-6x+1+1\\ =\left(9x^2-6x+1\right)+1\\ =\left(3x-1\right)^2+1\\ Do\text{ }\left(3x-1\right)^2\ge0\forall x\\ \Rightarrow B=\left(3x-1\right)^2+1\ge1\forall x\\ \text{Dấu “=” xảy ra khi: }\\ \left(3x-1\right)^2=0\\ \Leftrightarrow3x-1=0\\ \Leftrightarrow3x=1\\ \Leftrightarrow x=\dfrac{1}{3}\\ Vậy\text{ }B_{\left(Min\right)}=1\text{ }khi\text{ }x=\dfrac{1}{3}\)

\(C=-x^2+2x+4\\ =-x^2+2x-1+5\\ =-\left(x^2-2x+1\right)+5\\ =-\left(x-1\right)^2+5\\ Do\text{ }\left(x-1\right)^2\ge0\forall x\\ \Rightarrow-\left(x-1\right)^2\le0\forall x\\ \Rightarrow C=-\left(x-1\right)^2+5\le5\forall x\\ \text{ Dấu “=” xảy ra khi: }\\ \left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\\ \text{Vậy }C_{\left(Max\right)}=5\text{ }khi\text{ }x=1\)

\(D=-x^2+4x\\ =-x^2+4x-4+4\\ =-\left(x^2-4x+4\right)+4\\ =-\left(x-2\right)^2+4\\ \\ Do\text{ }\left(x-2\right)^2\ge0\forall x\\ \Rightarrow-\left(x-2\right)^2\le0\forall x\\ \Rightarrow C=-\left(x-2\right)^2+4\le4\forall x\\ \text{ Dấu “=” xảy ra khi: }\\ \left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \text{Vậy }C_{\left(Max\right)}=4\text{ }khi\text{ }x=2\)

29 tháng 11 2017

Câu 2:

\(\text{Ta có : }x+y=2\\ \Rightarrow\left(x+y\right)^2=2^2\\ \Rightarrow x^2+2xy+y^2=4\\ Thay\text{ }x^2+y^2=10\text{ }vào\\ \Rightarrow2xy+10=4\\ \Rightarrow2xy=-6\\ \Rightarrow xy=-3\\ \text{Ta lại có : }x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\\ Thay\text{ }x^2+y^2=10;x+y=2;xy=-3\text{ }ta\text{ }được:\\ x^3+y^3=2\cdot\left(10+3\right)=26\)

Vậy \(x^3+y^3=26\text{ }tại\text{ }x+y=2;x^2+y^2=10\)

16 tháng 7 2019

\(C=-4x^2+9x+7=-\left[\left(2x\right)^2-9x-7\right]\)

\(=-\left[\left(2x\right)^2-2.2,25x+5,0625-12,0625\right]\)

\(=-\left[\left(2x-2,25\right)^2-12,065\right]=-\left(2x-2,25\right)^2+12,0625\)

Ta có: \(\left(2x-2,25\right)^2\ge0\)\(\Leftrightarrow-\left(2x-2,25\right)^2\le0\)\(\Leftrightarrow-\left(2x-2,25\right)^2+12,0625\le12,0625\)

Vậy \(C_{max}=12,0625\)(Dấu "="\(\Leftrightarrow x=1,125\))

16 tháng 7 2019

C= -4x2 +9x+7

Giải phương trình trên máy tính rồi ấn 3 lần dấu ' = ' để tìm GTLN

KQ : Max C = \(\frac{9}{8}\)

D=-3x2-7x+12

Giải phương trình trên máy tính rồi ấn 3 lần dấu ' = ' để tìm GTLN

Max D = \(-\frac{7}{6}\)

Không có Min đâu nhé bạn

26 tháng 10 2017

\(A=16x^2+8x+3\\ A=16x^2+8x+1+2\\ A=\left(16x^2+8x+1\right)+2\\ A=\left(4x+1\right)^2+2\\ Do\left(4x+1\right)^2\ge0\forall x\\ \Rightarrow A=\left(4x+1\right)^2+2\ge2\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(4x+1\right)^2=0\\ \Leftrightarrow4x+1=0\\ \Leftrightarrow4x=-1\\ \Leftrightarrow x=-\dfrac{1}{4}\\ \text{Vậy }A_{\left(Min\right)}=2\text{ khi }x=-\dfrac{1}{4}\\ \)

\(B=y^2-5y+8\\ B=y^2-5y+\dfrac{25}{4}+\dfrac{7}{4}\\ B=\left(y^2-5y+\dfrac{25}{4}\right)+\dfrac{7}{4}\\ B=\left[y^2-2\cdot y\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]+\dfrac{7}{4}\\ B=\text{ }\left(y-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\\ Do\text{ }\left(y-\dfrac{5}{2}\right)^2\ge0\forall x\\ \Rightarrow B=\left(y-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(y-\dfrac{5}{2}\right)^2=0\\ \Leftrightarrow y-\dfrac{5}{2}=0\\ \Leftrightarrow y=\dfrac{5}{2}\\ \text{Vậy }B_{\left(Min\right)}=\dfrac{7}{4}\text{ }khi\text{ }y=\dfrac{5}{2}\)

\(C=2x^2-2x+2\\ C=2x^2-2x+\dfrac{1}{2}+\dfrac{3}{2}\\ C=\left(2x^2-2x+\dfrac{1}{2}\right)+\dfrac{3}{2}\\ C=2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{2}\\ C=2\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{3}{2}\\ C=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}\\ Do\text{ }\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\\ \Rightarrow C=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}\ge\dfrac{3}{2}\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(x-\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{1}{2}=0\\ \Leftrightarrow x=\dfrac{1}{2}\\ \text{Vậy }C_{\left(Min\right)}=\dfrac{3}{2}\text{ }khi\text{ }x=\dfrac{1}{2}\)

\(D=9x^2-6x+25y^2+10y+4\\ D=9x^2-6x+25y^2+10y+1+1+2\\ D=\left(9x^2-6x+1\right)+\left(25y^2+10y+1\right)+2\\ D=\left[\left(3x\right)^2-2\cdot3x\cdot1+1^2\right]+\left[\left(5y\right)^2+2\cdot5y\cdot1+1^2\right]+2\\ D=\left(3x-1\right)^2+\left(5y+1\right)^2+2\\ Do\text{ }\left(3x-1\right)^2\ge0\forall x\\ \left(5y+1\right)^2\ge0\forall y\\ \Rightarrow\left(3x-1\right)^2+\left(5y+1\right)^2\ge0\forall x;y\\ \Rightarrow D=\left(3x-1\right)^2+\left(5y+1\right)^2+2\ge2\forall x;y\\ \text{Dấu “=” xảy ra khi : }\left\{{}\begin{matrix}\left(3x-1\right)^2=0\\\left(5y+1\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3x-1=0\\5y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=1\\5y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=-\dfrac{1}{5}\end{matrix}\right.\\ \text{Vậy }D_{\left(Min\right)}=2\text{ khi }x=\dfrac{1}{3};y=-\dfrac{1}{5}\)

26 tháng 10 2017

Câu 2

\(M=x^2+6x+1\\ M=x^2+6x+9-8\\ M=\left(x^2+6x+9\right)-8\\ M=\left(x+3\right)^2-8\\ Do\text{ }\left(x+3\right)^2\ge0\forall x\\ M=\left(x+3\right)^2-8\ge-8\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(x+3\right)^2=0\\ \Leftrightarrow x+3=0\\ \Leftrightarrow x=-3\\ \text{Vậy }M_{\left(Min\right)}=-8\text{ khi }x=-3\)

\(N=10y-5y^2-3\\ N=10y-5y^2-5+2\\ N=-\left(5y^2-10y+5\right)+2\\ N=-5\left(y^2-2y+1\right)+2\\ N=-5\left(y-1\right)^2+2\\ Do\left(y-1\right)^2\ge0\forall x\\ \Rightarrow-\left(y-1\right)^2\le0\forall x\\ \Rightarrow-5\left(y-1\right)^2\le0\forall x\\ \Rightarrow N=-5\left(y-1\right)^2+2\le2\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(y-1\right)^2=0\\ \Leftrightarrow y-1=0\\ \Leftrightarrow y=1\\ \text{Vậy }N_{\left(Max\right)}=2\text{ khi }y=1\)

24 tháng 9 2017

\(A=4x^2-4x+2017=4\left(x^2-x\right)+2017=4\left(x^2-\dfrac{1}{2}.x.2+\dfrac{1}{4}\right)+2016=4\left(x-\dfrac{1}{2}\right)^2+2016\ge2016\)

\(B=3x-x^2-15\\=-\left(x^2-3x+15\right)=-\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{51}{4}\right)\\ =-\left(x-\dfrac{3}{2}\right)^2-\dfrac{51}{4}\le-\dfrac{51}{4}\)

\(C=3a^2-2ab+b^2-4a+4\\ =\left(a^2-2ab+b^2\right)+\left(2a^2-4a+4\right)\\ =\left(a-b\right)^2+2\left(a^2-2.a.1+1+1\right)\\ =\left(a-b\right)^2+2\left(a-1\right)^2+2\ge2\)