Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a: \(=a^2+2ab+b^2-a^2-2ab-b^2=0\)
b: \(=x^3+27-54-x^3=-27\)
Câu 4:
\(\Leftrightarrow3x^3+x^2+9x^2+3x-3x-1-4⋮3x+1\)
\(\Leftrightarrow3x+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{0;1\right\}\)
a) \(ĐKXĐ:x\ne\pm3\)
\(A=\frac{5}{x+3}-\frac{2}{3-x}+\frac{3x^2-2x-9}{x^2-9}\)
\(\Leftrightarrow A=\frac{5\left(x-3\right)+2\left(x+3\right)-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{5x-15+2x+6-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x}{x+3}\)
b) Khi \(\left|x-2\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\2-x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
Thay x = 1 vào A, ta được :
\(A=\frac{-3}{1+3}=\frac{-3}{4}\)
Vậy khi \(\left|x-2\right|=1\Leftrightarrow A=-\frac{3}{4}\)
c) Để \(A\inℤ\)
\(\Leftrightarrow\frac{-3x}{x+3}\inℤ\)
\(\Leftrightarrow-3x⋮x+3\)
\(\Leftrightarrow-3\left(x+3\right)+9⋮x+3\)
\(\Leftrightarrow9⋮x+3\)
\(\Leftrightarrow x+3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)
3/
(2x+3)2 - 2(2x+3)(2x+5) + (2x+5)2
= [(2x+3) - (2x+5)]2
= (2x+3-2x-5)2
= (-2)2 = 4
Bài 3:
1:
a: Xét tứ giác AEDF có \(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
nên AEDF là hình chữ nhật
b: Xét tứ giác BEFD có
DF=BE
DF//BE
Do đó; BEFD là hình bình hành
2: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(S_{ABC}=\dfrac{3\cdot4}{2}=6\left(Cm^2\right)\)
Bài 2 :
a) (2x + 1)(1 - 2x) + (2x - 1)2 = 22
=> 1 - 4x2 + (4x2 - 4x + 1) = 22
=> 1 - 4x2 + 4x2 + 4x + 1 = 22
=> 4x + 2 = 22
=> 4x = 20
=> x = 5
Vậy x = 5
Bài 1:
a: \(=2x^2-3xy+5y^2\)
b: \(=\dfrac{2x^3-10x^2-11x^2+55x+12x-60}{x-5}=2x^2-11x+12\)
c: \(=\dfrac{6x^3+3x^2-10x^2-5x+4x+2}{2x+1}=3x^2-5x+2\)
c: \(=\dfrac{\left(x+3\right)^2-y^2}{x+y+3}=x+3-y\)