Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-
1/ Vì \(\pi< \alpha< \frac{3}{2}\pi\)
\(\Rightarrow\)\(\alpha\in\) góc phần tư thứ 3\(\Rightarrow\sin\alpha< 0;\cos\alpha< 0;\cot\alpha>0\)
2/ Xét 3 trường hợp:
TH1: \(0^0< \alpha< 90^0\) \(\Rightarrow\alpha\in\) góc phần tư thứ nhất\(\Rightarrow\sin\alpha>0;\cos\alpha>0;\cot\alpha>0\)
TH2: \(-90^0< \alpha< 0^0\Rightarrow\alpha\in\) góc phần tư thứ tư
\(\Rightarrow\sin\alpha< 0;\cos\alpha>0;\cot\alpha< 0\)
TH3: \(-170^0< \alpha< -90^0\)\(\Rightarrow\alpha\in\) góc phần tư thứ ba
\(\Rightarrow\sin\alpha< 0;\cos\alpha< 0;\cot\alpha>0\)
3/ Vì...=> \(\alpha\in\) góc phần tư thứ ba
\(\Rightarrow...\)
Bài 1:
\(A=\left(1+sinx\right)\left(1-sinx\right)tan^2x=\left(1-sin^2x\right).\frac{sin^2x}{cos^2x}=cos^2x.\frac{sin^2x}{cos^2x}=cos^2x\)
\(B=cot^2x-sin^2x.cot^2x+1-cot^2x=1-sin^2x.\frac{cos^2x}{sin^2x}=1-cos^2x=sin^2x\)
\(C=tan^2x+2+\frac{1}{tan^2x}-\left(tan^2x-2+\frac{1}{tan^2x}\right)=2+2=4\)
Bài 2:
Đề yêu cầu tính giá trị lượng giác nào bạn? sin?cos?tan?cot?
Không hỏi thì làm sao mà biết cần tính gì
--.-- \(-\pi>-\frac{3}{2}\pi\) mà
Chắc nhầm đề rồi, phải là \(-\pi>a>-\frac{3}{2}\pi\)mới đúng chứ
\(-\pi>a>-\frac{3}{2}\pi\Leftrightarrow\pi>a>\frac{1}{2}\pi\)
\(\cos a=-\frac{4}{5}\Rightarrow\sin a=\frac{3}{5}\)
\(\sin2a=2\sin a.\cos a=2.\frac{3}{5}.\frac{-4}{5}=-\frac{24}{25}\)
\(\cos2a=2\cos^2a-1=\frac{7}{25}\)
\(\sin\left(\frac{5\pi}{2}-a\right)=\sin\left(\frac{\pi}{2}-a\right)=\cos a=-\frac{4}{5}\)
\(\sin\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{3}{5}-\frac{4}{5}.\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}\)
\(\cos\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{-4}{5}-\frac{\sqrt{2}}{2}.\frac{3}{5}=-\frac{7\sqrt{2}}{10}\)
\(\Rightarrow\tan\left(a+\frac{\pi}{4}\right)=\frac{1}{7}\)
\(\cos^2\left(\frac{a}{2}\right)=\frac{1+\cos a}{2}=\frac{1}{10}\Leftrightarrow\left|\cos\frac{a}{2}\right|=\frac{\sqrt{10}}{10}\)
Mà \(\frac{\pi}{2}>\frac{a}{2}>\frac{\pi}{4}\)
\(\Rightarrow\cos\frac{a}{2}=\frac{\sqrt{10}}{10}\)
\(A=1-cos^2x+2cosx+1=3-\left(cosx-1\right)^2\le3\)
\(A_{max}=3\) khi \(cosx=1\)
\(B=1-sin^2x-2sin^2x-3=-1-\left(sinx+1\right)^2\le-1\)
\(B_{max}=-1\) khi \(sinx=-1\)
\(A=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{2}-1\right)}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{x}{2}}}}=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{2}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{4}-1\right)}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{x}{4}}}=\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{4}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{8}-1\right)}=\sqrt{cos^2\frac{x}{8}}=cos\frac{x}{8}\)
\(B=\sqrt{2+\sqrt{2+\sqrt{2+2\left(2cos^2\frac{a}{2}-1\right)}}}\)
\(=\sqrt{2+\sqrt{2+\sqrt{4cos^2\frac{a}{2}}}}=\sqrt{2+\sqrt{2+2cos\frac{a}{2}}}\)
\(=\sqrt{2+\sqrt{2+2\left(cos^2\frac{a}{4}-1\right)}}=\sqrt{2+\sqrt{4cos^2\frac{a}{4}}}\)
\(=\sqrt{2+2cos\frac{a}{4}}=\sqrt{2+2\left(2cos^2\frac{a}{8}-1\right)}=2cos\frac{a}{8}\)
Bài 4:
$\sin a=\frac{1}{2}$ và $0< a< \pi$ nên $a=\frac{\pi}{6}$ hoặc $a=\frac{5}{6}\pi$
Nếu $a=\frac{\pi}{6}$ thì $\tan (2a-\frac{\pi}{2})+\sin a=\tan (2.\frac{\pi}{6}-\frac{\pi}{2})+\frac{1}{2}=\frac{-\sqrt{3}}{3}+\frac{1}{2}=\frac{3-2\sqrt{3}}{6}$
Nếu $a=\frac{5\pi}{6}$ thì:
\(\tan (2a-\frac{\pi}{2})+\sin a=\tan (2.\frac{5\pi}{6}-\frac{\pi}{2})+\frac{1}{2}=\frac{\sqrt{3}}{3}+\frac{1}{2}=\frac{3+2\sqrt{3}}{6}\)
Bài 3:
\(\tan a=\frac{-4}{7}=\frac{\sin a}{\cos a}\)
\(\Rightarrow \frac{\sin ^2a}{\cos ^2a}=\frac{16}{49}\Rightarrow \frac{1}{\cos ^2a}=\frac{65}{49}\) \(\Rightarrow \cos ^2a=\frac{49}{65}\)
Kết hợp điều kiện của $a$ suy ra $\cos a>0\Rightarrow \cos a=\frac{7}{\sqrt{65}}$
$\Rightarrow \sin a=\frac{-4}{7}\cos a=\frac{-4}{\sqrt{65}}$
Do đó:
\(\cos (2a-\frac{\pi}{2})=\cos 2a.\cos \frac{\pi}{2}+\sin 2a.\sin \frac{\pi}{2}\)
\(=(\cos ^2a-\sin ^2a).0+2\sin a\cos a.1=2\sin a\cos a=2.\frac{-4}{\sqrt{65}}.\frac{7}{\sqrt{65}}=\frac{56}{65}\)
sinα = \(\frac{1}{\sqrt{3}}\) nên cos2α = 1- sin2α = 1 - \(\frac{1}{3}\)= \(\frac{2}{3}\) ⇒ cosα = \(\pm\sqrt{\frac{2}{3}}\)
mà 0 < α < \(\frac{\pi}{2}\) ⇒ cosα > 0, nên cosα = \(\sqrt{\frac{2}{3}}\)
ta có \(cos\left(\alpha+\frac{\pi}{3}\right)\)= \(cos\alpha.cos\frac{\pi}{3}-sin\alpha.sin\frac{\pi}{3}\)=\(\sqrt{\frac{2}{3}}.\frac{1}{2}-\frac{1}{\sqrt{3}}.\frac{\sqrt{3}}{2}\)
=\(\frac{-3+\sqrt{6}}{6}\)
Do \(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{2\sqrt{6}}{5}\)
\(tana=\frac{sina}{cosa}=-\frac{\sqrt{6}}{12}\); \(cota=\frac{1}{tana}=-2\sqrt{6}\)