Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{y}{0,4}\) chuyển thành y.\(\dfrac{5}{2}\)=\(\dfrac{y+z}{4}\)
suy ra \(\dfrac{x}{4}\)=y=\(\dfrac{y+z}{10}\) y= \(\dfrac{y+z}{10}\) suy ra y=\(\dfrac{y}{10}+\dfrac{z}{10}\) suy ra \(\dfrac{9}{10}y=\dfrac{1}{10}z\) suy ra \(y=\dfrac{1}{9}z\) hay z=9y x+y+z=4y+y+9y=14y 14y=280 y=280:14=20 x=20.4=80 z=280-(20+80)=180 Tick mk nhaBài 11: Tìm x, y, z:
a) x=4y=0,4(y+z)x=4y=0,4(y+z) và x+y+z=280
Theo đề ta có: \(\dfrac{x}{1}=\dfrac{y}{\dfrac{1}{4}}=\dfrac{y+z}{\dfrac{5}{2}}\)
và x + y + z = 280
Áp dụng t/c của dãy tỉ số bằng nhau có:
\(\dfrac{x}{1}=\dfrac{y}{\dfrac{1}{4}}=\dfrac{y+z}{\dfrac{5}{2}}=\dfrac{x+y+y+z}{1+\dfrac{1}{4}+\dfrac{5}{2}}=\dfrac{280+y}{3,75}\)
\(\Rightarrow\dfrac{y}{\dfrac{1}{4}}=\dfrac{280+y}{3,75}\Rightarrow3,75y=\dfrac{1}{4}\left(280+y\right)\)
\(\Rightarrow3,75y=70+\dfrac{1}{4}y\Rightarrow3,75y-\dfrac{1}{4}y=70\)
\(\Rightarrow3,5y=70\Rightarrow y=\dfrac{70}{3,5}=20\)
Có: \(\dfrac{x}{1}=\dfrac{y}{\dfrac{1}{4}}\Rightarrow\dfrac{x}{1}=\dfrac{20}{\dfrac{1}{4}}\Rightarrow\dfrac{1}{4}x=20\Rightarrow x=20:\dfrac{1}{4}=80\)
\(\Rightarrow z=280-\left(x+y\right)=280-100=180\)
Vậy x = 80; y = 20; z = 180
a
9x=10y=z/2 và x-y+z=48
hay y/9=x/10=z/2 (vận dụng tỉ lệ thức) và x-y+z=48
từ tỉ lệ thức 9/y=x/10=z/2 và x-y+z=48
áp dụng dãy tỉ số bằng nhau ta có:
y/9=x/10=z/2=x-y=z/9-10+2=48/1=1
từ y/9=1=>y=1.9=9
x/10=1=>x=1.10=10
z/2=1=>1.2=2
vậy y=9
x=10
z=2
(hơi khó hỉu vì ghi bằng máy tính) thông cảm
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
= \(\frac{y+z+1+z+x+2+x+y-3}{x+y+z}\)
= \(\frac{2\left(x+y+z\right)}{x+y+z}\)
= 2
+) \(\frac{1}{x+y+z}=2\)
=> \(x+y+z=\frac{1}{2}=0,5\)
\(\Rightarrow\left\{\begin{matrix}x+y=0,5-z\\x+z=0,5-y\\y+z=0,5-x\end{matrix}\right.\)
=> \(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z-3}{z}=2\)
\(\Rightarrow\left\{\begin{matrix}\frac{15-x}{x}=2\\\frac{2,5-y}{y}=2\\\frac{-2,5-z}{z}=2\end{matrix}\right.\)
+ \(\frac{15-x}{x}=2\Rightarrow2x+x=15\Rightarrow3x=15\Rightarrow x=5\)
+ \(\frac{2,5-y}{y}=2\Rightarrow2y+y=2,5\Rightarrow3y=2,5\Rightarrow y=\frac{5}{6}\)
+ \(\frac{-2,5-z}{z}=2\Rightarrow2z+z=\left(-2,5\right)\Rightarrow3z=\left(-2,5\right)\Rightarrow z=\frac{-5}{6}\)
mk nhầm một chỗ nha bn : \(\frac{1,5-x}{x}=2\Rightarrow2x+x=1,5\Rightarrow3x=1,5\Rightarrow x=0,5\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{y+x+t}=\dfrac{y}{z+t+x}=\dfrac{y}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+z=3t\\y+z+t=3x\\z+t+x=3y\\t+x+y=3z\end{matrix}\right.\)
\(\Rightarrow x=y=z=t\)
Thay vào P ta được :
\(P=1+1+1+1=4\)
ta có : \(\frac{x+y}{3}\)= \(\frac{y+z}{2}\)=\(\frac{x+y+y+z}{3+2}\)=\(\frac{x+2y+z}{5}\)=\(\frac{9+y}{5}\)
=> x+2y+z=9+y
ta lại có :\(\frac{5-z}{1}\)=\(\frac{y+z}{2}\)=\(\frac{5-z+y+z}{1+2}\)=\(\frac{5+y}{3}\)=\(\frac{x+y}{3}\)
=> 5+y=x+y
=>x=5
ta có : \(\frac{9+y}{5}\)=\(\frac{y+z}{2}\)=\(\frac{9+y-y+x}{5-2}\)=\(\frac{9+x}{3}\)=\(\frac{x+y}{3}\)
=> 9+x=x+y
=>y=9
ta có : \(\frac{y+z}{2}\)=\(\frac{9+y}{5}\)=>\(\frac{9+z}{2}\)=\(\frac{18}{5}\)=3,6
=> 9+z=3,6.2=7,2
=>z=-1,8
=> x+y=5+9=14
=>x+y+z=5+9+(-1,8)=12,2
xong rồi nha bn
Theo đề bài, ta có:
\(\dfrac{3x}{4}=\dfrac{y}{2}=\dfrac{3z}{5}\) và x - z = 15
\(\Rightarrow\dfrac{3x}{4}=\dfrac{y}{2}\Rightarrow6x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}\) (1)
\(\Rightarrow\dfrac{y}{2}=\dfrac{3z}{5}\Rightarrow5y=6z\Rightarrow\dfrac{y}{6}=\dfrac{z}{5}\) (2)
(1)(2) \(\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{5}=\dfrac{x-z}{4-5}=-\dfrac{15}{1}=-15\)
\(\Rightarrow x=-60;y=-90;z=-75\)
\(\Rightarrow x+y+z=-225\)
ố la la
giề thế. có câu trả lời rồi chép luôn hề