K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

Bài 1: Tìm x,y biết (x+1)2+(y-1)2=0

vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}}\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2\ge0\) để có dấu"=" chỉ khi cả hai số hạng cùng=0 \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+1=0\\y-1=0\end{cases}}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Bài 2: Tìm giá trị nhỏ nhất của biểu thức

         A=(n-1)2+2016

\(\left(n-1\right)^2\ge0\Rightarrow\left(n-1\right)^2+2016\ge2016\Rightarrow GTNN.A=2016\)

Bài 3: Tìm giá trị lớn nhất của biểu thức:

         B=2016-(n-1).2 ; \(B=2016-\left(n-1\right).2\) Không có Gia trị Lớn nhất Vì khi n càng nhỏ hơn so với 1 B càng lớn

\(B=2016-\left(n-1\right)^2\) lập luân tương tự bài 2 GTLN B=2016

Bài 4: Chứng minh:

a, (2n+2+4n+2+2016) chia hết cho 4

\(a=2^{n+2}+4^{^{n+2}}+2016=2^2.2^n+4.4^{n+1}+4.504=4.\left(2^n+4^{n+1}+504\right)\)=> a chia hết cho 4

b, (3n+3n+1+3n+2) chia hết cho 13

\(b=3^n\left(1+3^1+3^2\right)=3^n.13=13.3^n\)=> b chia hết cho13

12 tháng 1 2019

ko biết

2 tháng 5 2017

Bài 1:

a, Ta có: (x - 1)2 \(\ge\)0 với mọi x

=> A = (x - 1)2 + 2016 \(\ge\)2016 

Dấu "=" xảy ra <=> (x-1)2 = 0 <=> x = 1

Vậy GTNN của A = 2016 tại x = 1

b, Ta có: |x + 4| \(\ge\)0 với mọi x

=> B = |x + 4| + 2017 \(\ge\)2017

Dấu "=" xảy ra <=> |x + 4| = 0 <=> x = -4

Vây GTNN của B = 2017 tại x = -4

Bài 2:

a, Ta có: (x + 1)2016 \(\ge\)0 với mọi x

=> P = 2010 - (x + 1)2016 \(\ge\)2010

Dấu "=" xảy ra <=> (x + 1)2016 = 0 <=> x = -1

Vậy GTLN của P = 2010 tại x = -1

b, Ta có: |3 - x| \(\ge\)0 với mọi x

=> Q = 2010 - |3 - x| \(\ge\)2010

Dấu "=" xảy ra <=> |3 - x| = 0 <=> x = 3

Vậy GTLN của Q = 2010 tại x = 3

5 tháng 2 2020

Bài 1 : 

Đề câu a) có thêm \(n\inℤ\)

a) \(A=n^2+n+3=n\left(n+1\right)+2+1\)

Ta thấy : \(n\left(n+1\right)⋮2,2⋮2\)

\(\Rightarrow n\left(n+1\right)+2⋮2\)

\(\Rightarrow n\left(n+1\right)+2+1⋮̸2\)

hay \(A⋮̸2\) ( đpcm )

b) Ta có : \(\left|2x-4\right|\ge0\forall x\)

\(\Rightarrow-\left|2x-4\right|\le0\forall x\)

\(\Rightarrow18-\left|2x-4\right|\le18\forall x\)

hay \(A\le18\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left|2x-4\right|=0\Leftrightarrow x=2\)

Vậy max \(A=18\) khi \(x=2\)

5 tháng 2 2020

b1 : 

a,n^2 + n + 3

= n(n + 1) + 3

n(n+1) là tích của 2 stn liên tiếp => n(n+1) chia hết cho 2

=> n(n+1) + 3 không chia hết cho 2

b, A = 18 - |2x - 4| 

|2x - 4| > 0 => - |2x - 4| < 0

=> 18 - |2x - 4| < 18 

=> A < 18

xét A = 18 khi |2x - 4| = 0

=> 2x - 4 = 0

=> x = 2

c, A = |5 - x| + 2015

|5 - x| > 0

=> |5 - x| + 2015 > 2015

=> A  > 2015

xét A = 2015 khi |5 - x| = 0

=> 5 - x = 0 => x = 5

5 tháng 8 2017

mình biết mỗi bài 4:

A={2007}

mình đi xin bn đó

6 tháng 8 2017

cảm ơn bạn Xử Nữ các bạn khác giúp mình với

14 tháng 11 2016

4

Do 288 chia n dư 38=>250 chia hết cho n (1)

                              => n > 38 (2)

Do 414 chia n dư 14=> 400 chia hết cho n (3)

Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)

=> n=50

14 tháng 11 2016

1

x+15 chia hết cho x+2

x+2 chia hết cho x+2 

=> x+15-(x+2) chia hết ch0 x+2

=>13 chia hết cho x+2

Do x thuộc N => x+2>= 0+2=2

Mà 13 chia hết cho 1 và 13

=> x+2 = 13

=> x=11

Bài 3 : 

Ta có : \(x^2+2\ge2\forall x\Rightarrow\left(x^2+2\right)^2\ge4\forall x\)

             \(\left|y-1\right|\ge0\forall y\)

Nên K = \(\left(x^2+2\right)^2+\left|y-1\right|+2014\ge4+0+2014=2018\)

Vậy Kmin = 2018 khi x2 + 2 = 2

                            <=> x2 = 0 

                              <=> x = 0 

                              |y - 1| = 0 

                              <=> y - 1 = 0 

                               <=> y = 1 

Bài 1:Trên cùng một nửa mặt phẳng bờ Om, vẽ 2 tia On,Op sao cho góc mOn = 40o , góc mOp = 80o.a) Tia On có nằm giữa hai tia Om,Op không? Vì sao?b) Tính góc nOp?c) Tia On có là tia phân giác của góc mOp không? Vì sao?d) Gọi Oq là tia phân giác của góc mOn. Tính góc pOq.Bài 2:Chứng minh rằng: Q = 1/22 +1/32 +1/42 +.....+1/(n-1)2 +1/n2 < 1 với mọi n thuộc N, n > hoặc = 2Bài 3:a) Tìm n thuộc Z để 2n + 3 chia hết cho n-5b) Cho A...
Đọc tiếp

Bài 1:

Trên cùng một nửa mặt phẳng bờ Om, vẽ 2 tia On,Op sao cho góc mOn = 40o , góc mOp = 80o.

a) Tia On có nằm giữa hai tia Om,Op không? Vì sao?

b) Tính góc nOp?

c) Tia On có là tia phân giác của góc mOp không? Vì sao?

d) Gọi Oq là tia phân giác của góc mOn. Tính góc pOq.

Bài 2:

Chứng minh rằng: Q = 1/22 +1/32 +1/42 +.....+1/(n-1)2 +1/n2 < 1 với mọi n thuộc N, n > hoặc = 2

Bài 3:

a) Tìm n thuộc Z để 2n + 3 chia hết cho n-5

b) Cho A = 9999931999 - 5555571997 . Chứng minh rằng A chia hết cho 5

c) Chứng minh rằng với mọi n thuộc N thì 8n + 5/6n + 4 là phân số tối giản

d) So sánh: (1/243)9 và (1/82)12

Bài 4:

a) Chứng minh: A = 1/22 +1/32 +1/42 +......+1/n2 < 3/4    với mọi n thuộc N, n > hoặc = 2

b) Chứng minh rằng: n(n+15)chia hết cho 2 với mọi n thuộc N  ;  b1)  (n+1)*(3n+2) chia hết cho 2 với mọi n thuộc N

c) So sánh: 7150 và 3775

Bài 5:

a) Tìm x,y để A = 144xy chia hết cho 45

b) Cho B = 3n + 2/2n - 1 . Tìm n thuộc Z để B là số nguyên

Bài 6: 

a) Tính A = 1*2*3*...*9 - 1*2*3*..*8 - 1*2*3*....*8*8    ;   B = (3*4*216)2/11*213*411-169

b) Tìm x:

b1) /1/2-2x/ + 2/3 = 7/3                                                 b2) [(3x - 54) * 8] : 4 = 18

b3) (2x - 15)3 = (2x - 15)5                                              b4) x + x+1 + x+2 + ......+ x+2013 = 2035147

Bài 7:

a) 1 số tự nhiên nhỏ nhất biết số đó chia 3,4,5,6 đều dư 2, chia 7 dư 3

b) Tìm x,y nguyên biết: b1) (x-1)*(y-2) = 3                              b2) x + y +xy = 40

Bài 8:

Góc xBy = 55o . Tia Bx,By lấy A,C sao cho A khác B, C khác B, D thuộc AC sao cho góc ABD = 30o

a) Tính AC biết AD = 4, CD = 3

b) Tính góc DBC

c) Từ B về tia Bz sao cho góc DBz = 90o . Tính góc ABz

Bài 9:

a) Cho T = 2/2 +3/22 +4/22 +.....+2016/22 +2017/22 . So sánh T và 3

b) Tính B = (2017 - 1/4 - 2/5 - 3/5 - .... - 2017/2020) : (1/20 + 1/25 + 1/30 + ...... + 1/10100)

0