Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a, Ta có: (x - 1)2 \(\ge\)0 với mọi x
=> A = (x - 1)2 + 2016 \(\ge\)2016
Dấu "=" xảy ra <=> (x-1)2 = 0 <=> x = 1
Vậy GTNN của A = 2016 tại x = 1
b, Ta có: |x + 4| \(\ge\)0 với mọi x
=> B = |x + 4| + 2017 \(\ge\)2017
Dấu "=" xảy ra <=> |x + 4| = 0 <=> x = -4
Vây GTNN của B = 2017 tại x = -4
Bài 2:
a, Ta có: (x + 1)2016 \(\ge\)0 với mọi x
=> P = 2010 - (x + 1)2016 \(\ge\)2010
Dấu "=" xảy ra <=> (x + 1)2016 = 0 <=> x = -1
Vậy GTLN của P = 2010 tại x = -1
b, Ta có: |3 - x| \(\ge\)0 với mọi x
=> Q = 2010 - |3 - x| \(\ge\)2010
Dấu "=" xảy ra <=> |3 - x| = 0 <=> x = 3
Vậy GTLN của Q = 2010 tại x = 3
Bài 1 :
Đề câu a) có thêm \(n\inℤ\)
a) \(A=n^2+n+3=n\left(n+1\right)+2+1\)
Ta thấy : \(n\left(n+1\right)⋮2,2⋮2\)
\(\Rightarrow n\left(n+1\right)+2⋮2\)
\(\Rightarrow n\left(n+1\right)+2+1⋮̸2\)
hay \(A⋮̸2\) ( đpcm )
b) Ta có : \(\left|2x-4\right|\ge0\forall x\)
\(\Rightarrow-\left|2x-4\right|\le0\forall x\)
\(\Rightarrow18-\left|2x-4\right|\le18\forall x\)
hay \(A\le18\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|2x-4\right|=0\Leftrightarrow x=2\)
Vậy max \(A=18\) khi \(x=2\)
b1 :
a,n^2 + n + 3
= n(n + 1) + 3
n(n+1) là tích của 2 stn liên tiếp => n(n+1) chia hết cho 2
=> n(n+1) + 3 không chia hết cho 2
b, A = 18 - |2x - 4|
|2x - 4| > 0 => - |2x - 4| < 0
=> 18 - |2x - 4| < 18
=> A < 18
xét A = 18 khi |2x - 4| = 0
=> 2x - 4 = 0
=> x = 2
c, A = |5 - x| + 2015
|5 - x| > 0
=> |5 - x| + 2015 > 2015
=> A > 2015
xét A = 2015 khi |5 - x| = 0
=> 5 - x = 0 => x = 5
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
Bài 3 :
Ta có : \(x^2+2\ge2\forall x\Rightarrow\left(x^2+2\right)^2\ge4\forall x\)
\(\left|y-1\right|\ge0\forall y\)
Nên K = \(\left(x^2+2\right)^2+\left|y-1\right|+2014\ge4+0+2014=2018\)
Vậy Kmin = 2018 khi x2 + 2 = 2
<=> x2 = 0
<=> x = 0
|y - 1| = 0
<=> y - 1 = 0
<=> y = 1
Bài 1: Tìm x,y biết (x+1)2+(y-1)2=0
vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}}\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2\ge0\) để có dấu"=" chỉ khi cả hai số hạng cùng=0 \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+1=0\\y-1=0\end{cases}}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Bài 2: Tìm giá trị nhỏ nhất của biểu thức
A=(n-1)2+2016
\(\left(n-1\right)^2\ge0\Rightarrow\left(n-1\right)^2+2016\ge2016\Rightarrow GTNN.A=2016\)
Bài 3: Tìm giá trị lớn nhất của biểu thức:
B=2016-(n-1).2 ; \(B=2016-\left(n-1\right).2\) Không có Gia trị Lớn nhất Vì khi n càng nhỏ hơn so với 1 B càng lớn
\(B=2016-\left(n-1\right)^2\) lập luân tương tự bài 2 GTLN B=2016
Bài 4: Chứng minh:
a, (2n+2+4n+2+2016) chia hết cho 4
\(a=2^{n+2}+4^{^{n+2}}+2016=2^2.2^n+4.4^{n+1}+4.504=4.\left(2^n+4^{n+1}+504\right)\)=> a chia hết cho 4
b, (3n+3n+1+3n+2) chia hết cho 13
\(b=3^n\left(1+3^1+3^2\right)=3^n.13=13.3^n\)=> b chia hết cho13