Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5^x . 5^x+1 . 5 ^x+2 <100...0:2^18 <=>5^3x+3 <10^18:2^18= (10:2)^18 =5^18 <=>3x +3 <18 <=>3x<15 <=>x<5 <=>x=0,1,2,3,4 k nha ok thank
Lời giải:
** Bổ sung điều kiện $x$ là số tự nhiên
Ta có:
$5^x+5^{x+1}+5^{x+2}=1\underbrace{00...0}_{28}:2^{18}$
$5^x(1+5+5^2)=10^{28}:2^{18}$
$5^x.31=5^{28}.2^{28}:2^{18}$
$5^x.31=5^{28}.2^{10}$
Với $x$ là số tự nhiên thì $5^x.31$ lẻ, trong khi đó $5^{28}.2^{10}$ chẵn nên hai vế không thể bằng nhau.
Do đó không tồn tại $x$ thỏa mãn đề bài.
mình viết lộn dấu bé hơn hoặc bằng thành dấu bằng. Mà cảm ơn bạn nhé
Bài 2:
Ta có: \(5^x.5^{x+2}\le10^{18}\div2^8\)
\(\Rightarrow5^{x+x+2}\le\left(10\div2\right)^{18}\)
\(\Rightarrow5^{2x+2}\le5^{18}\)
\(\Rightarrow2x+2\le18\Rightarrow2x\le16\Rightarrow x\le8\)
\(\Rightarrow x\in\left\{0;1;2;3;4;5;6;7;8\right\}\)
Bài 3:
Ta có: \(S=1+2+2^2+...+2^9=\left(2+2^2+...+2^{10}\right)-\left(1+2+2^2+...+2^9\right)\)
\(=2^{10}-1\left(1\right)\)
Ta có: \(5\times2^8=\left(2^2+1\right)\times2^8=2^{10}+2^8\left(2\right)\)
Từ (1) và (2) \(\Rightarrow S< 5\times2^8\)