Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
a) 2x2 + 3( x - 1 )( x + 1 ) - 5x( x + 1 )
= 2x2 + 3( x2 - 1 ) - 5x2 - 5x
= 2x2 + 3x2 - 3 - 5x2 - 5x
= -5x - 3
b) 4( x - 1 )( x + 5 ) - ( x - 2 )( x + 5 ) - 3( x - 1 )( x + 2 )
= 4( x2 + 4x - 5 ) - ( x2 + 3x - 10 ) - 3( x2 + x - 2 )
= 4x2 + 16x - 20 - x2 - 3x + 10 - 3x2 - 3x + 6
= 10x - 4
Bài 2.
a) ( 8 - 5x )( x + 2 ) + 4( x - 2 )( x + 1 ) + 2( x - 2 )( x + 2 ) = 0
<=> -5x2 - 2x + 16 + 4( x2 - x - 2 ) + 2( x2 - 4 ) = 0
<=> -5x2 - 2x + 16 + 4x2 - 4x - 8 + 2x2 - 8 = 0
<=> x2 - 6x = 0
<=> x( x - 6 ) = 0
<=> x = 0 hoặc x = 6
b) ( x + 3 )( x + 2 ) - ( x - 2 )( x + 5 ) = 0
<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 0
<=> x2 + 5x + 6 - x2 - 3x + 10 = 0
<=> 2x + 16 = 0
<=> 2x = -16
<=> x = -8
Bài 3.
A = ( n2 + 3n - 1 )( n + 2 ) - n3 + 2
= n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2
= 5n2 + 5n
= 5n( n + 1 ) chia hết cho 5 ( đpcm )
B = ( 6n + 1 )( n + 5 ) - ( 3n + 5 )( 2n - 1 )
= 6n2 + 30n + n + 5 - ( 6n2 - 3n + 10n - 5 )
= 6n2 + 31n + 5 - 6n2 - 7n + 5
= 24n + 10
= 2( 12n + 5 ) chia hết cho 2 ( đpcm )
bài 1:a,\(2x^2+3\left(x-1\right)\left(x+1\right)-5x\left(x+1\right)\)
\(=2x^2+3x^2-3-5x^2-5x\)
\(=-3-5x\)
b.\(4\left(x-1\right)\left(x+5\right)-\left(x-2\right)\left(x+5\right)-3\left(x-1\right)\left(x+2\right)\)
\(=4\left(x^2+4x-5\right)-\left(x^2+3x-10\right)-3\left(x^2+x-2\right)\)
\(=4x^2+16x-20-x^2-3x+10-3x^2-3x+6\)
\(=10x-4\)
\(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
\(8x+16-5x^2-10x+4\left(x^2+x-2x-2\right)+2\left(x^2+2x-2x-4\right)=0\)
\(-2x+16-5x^2+4x^2-4x-8+2x^2-8=0\)
\(x^2-6x=0\)
\(x\left(x-6\right)=0\)
\(\orbr{\begin{cases}x=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)
Bài 2 chia đa thức cho đa thức ta được số dư là 6-a(7-2a)
để đa thức 2x2 + 7x + 6 chia hết cho x+a thì 6-a(7-2a)=0
=>6-7a+2a2=0
<=>2a2-4a-3a+6=0
<=>2a(a-2)-3(a-2)=0
<=>(a-2)(2a-3)=0
=> a=2 hoặc a=3/2
Vậy vớia=2 hoặc a=3/2 thì đa thức 2x2 + 7x + 6 chia hết cho x+a
bài 1
n lẻ nên đặt n=2k+1 (k thuộc Z)
Ta có n3-3n2-n+3=n2(n-3)-(n-3)
=(n-3)(n-1)(n+1)
=(2k+1-3)(2k+1-1)(2k+1+1)
=2k(2k+2)(2k-2)
=8.(k-1).k.(k+1)
Vì (k-1).k.(k+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3 mà (2;3)=1 nên chia hết cho 6
Ta có 48=6.8 nên 8.k(k+1)(k-1) chia hết cho 48 hay n3-3n2-n+3chia hết cho 48