Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,x^2-(x+1)(x-1)=0
x^2-x^2+1+0
1=0(vô lý)
2,5x^3+3x^2+3x+1=4x^2
x^3+3x^2+3x+1=0
(x+1)=0
x=-1
3,x^3+x^2=0
x^2(x+1)=0
x=0 or x=-1
4,2x^3-12x^2+18x=0
x^3-6x^2+9x=0
x(x^2-6x+9)=0
x(x-3)^2=0
x=0 or x=3
5,5x^2-4(x^2-2x+1)+20=0
5x^2-4x^2+8x-4+20=0
x^2+8x+16=0
(x+4)^2=0
x=-4
6,5x(x-3)+7x-21=0
5x(x-3)+7(x-3)=0
(5x+7)(x-3)=0
5x-7=0 or x-3=0
x=7/5 or x=3
7,2x^3-50x=0
2x(x^2-25)=0
2x(x-5)(x+5)=0
x=0 or x=5 or x=-5
8,(4x-1)^2-9(x+3)^2=0
(4x-1)^2-3^2*(x+3)^2=0
(4x-1)^2-(3x+9)^2=0
(4x-1-3x-9)(4x-1+3x+9)=0
(x-10)(7x+8)=0
x=10 or x=-8/7
9,3(x-2)^2-x+2=0
3*(x-2)*(x-2)-(x-2)=0
(3x-6)(x-2)-(x-2)=0
(x-2)(3x-6-1)=0
(x-2)(3x-7)=0
x=2 or x=7/3
10,9x^2+6x-8=0
9x^2+12x-6x-8=0
3x(3x-2)+4(3x-2)=0
(3x+4)(3x-2)=0
3x+4=0 or 3x-2=0
x=-4/3 or x=2/3
1. \(x^2\left(x+1\right)+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x+1=0\Rightarrow x=-1\)
2. \(\left(x-2\right)\left(6x+2\right)+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right).7x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\7x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
3.
\(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
4.
\(x^2-x-6=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\)
\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
\(\left(x+1\right)^2=4\left(x^2-2x+1\right)^2\\\Leftrightarrow\left(x+1\right)^2=4\left(x-1\right)^2\\\Leftrightarrow \left(x+1\right)^2-4\left(x-1\right)^2=0\\\Leftrightarrow \left(x+1\right)^2-\left(2x-2\right)^2=0\\\Leftrightarrow \left[\left(x+1\right)+\left(2x-2\right)\right]\left[\left(x+1\right)-\left(2x-2\right)\right] =0\\ \Leftrightarrow\left(x+1+2x-2\right)\left(x+1-2x+2\right)=0\\\Leftrightarrow \left(3x-1\right)\left(3-x\right)=0\\\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=3\end{matrix}\right. \)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{3};3\right\}\)
\(\left(2x+7\right)^2=9\left(x+2\right)^2\\ \Leftrightarrow\left(2x+7\right)^2-9\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+7\right)^2-\left(3x+6\right)^2=0\\ \Leftrightarrow\left[\left(2x+7\right)+\left(3x+6\right)\right]\left[\left(2x+7\right)-\left(3x+6\right)\right]=0\\ \Leftrightarrow\left(2x+7+3x+6\right)\left(2x+7-3x-6\right)=0\\ \Leftrightarrow\left(5x+13\right)\left(1-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x+13=0\\1-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-13}{5}\\x=1\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{-13}{5};1\right\}\)
\(4\left(2x+7\right)^2=9\left(x+3\right)^2\\\Leftrightarrow 4\left(2x+7\right)^2-9\left(x+3\right)=0\\ \Leftrightarrow\left(4x+14\right)^2-\left(3x+9\right)^2=0\\\Leftrightarrow \left[\left(4x+14\right)+\left(3x+9\right)\right]\left[\left(4x+14\right)-\left(3x+9\right)\right]=0\\\Leftrightarrow \left(4x+14+3x+9\right)\left(4x+14-3x-9\right)=0\\\Leftrightarrow \left(7x+23\right)\left(x+5\right)=0\\\Leftrightarrow\left[{}\begin{matrix}7x+23=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-23}{7}\\x=-5\end{matrix}\right. \)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{-23}{7};-5\right\}\)
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
\(\left(3x-5\right)\left(-2x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-5=0\\-2x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=5\\-2x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{-7}{2}\end{cases}}}\)
\(9x^2-1=\left(1+3x\right)\left(2x-3\right)\)
\(\Leftrightarrow9x^2-1=2x-3+6x^2-9x\)
\(\Leftrightarrow9x^2-1=-7x-3+6x^2\)
\(\Leftrightarrow9x^2-1+7x+3-6x^2=0\)
\(\Leftrightarrow3x^2+2+7x=0\)
\(\Leftrightarrow3x^2+6x+x+2=0\)
\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{3}\end{cases}}\)
câu 5: đặt x2 = t, khi đó:
\(-x^4+2x^2+1=0\) (5)
\(\Leftrightarrow-t^2+2t+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1+\sqrt{2}\\t=1-\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=1+\sqrt{2}\\x^2=1-\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{1+\sqrt{2}}\\x=-\sqrt{1+\sqrt{2}}\\x\in R\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{1+\sqrt{2}}\\x=-\sqrt{1+\sqrt{2}}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (5) là \(S=\left\{-\sqrt{1+\sqrt{2}};\sqrt{1+\sqrt{2}}\right\}\)
Lần sau đăng thì chia thành nhiều câu hỏi nhé
\(16^2-9.\left(x+1\right)^2=0\)
\(16^2-\text{ }\left[3.\left(x+1\right)\right]^2=0\)
\(\left[16-3.\left(x+1\right)\right].\left[16+3\left(x+1\right)\right]=0\)
\(\left[16-3x-3\right]\left[16+3x+3\right]=0\)
\(\left[13-3x\right].\left[19+3x\right]=0\)
\(\Rightarrow\orbr{\begin{cases}13-3x=0\\19+3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=13\\3x=-19\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{13}{3}\\x=-\frac{19}{3}\end{cases}}}\)
KL:..............................
Nhiều câu hỏi mà bn ??