Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Mình không biết làm.
Bài 2:
TH1: n là số chẵn => n = 2k (k thuộc N), khi đó (n+20102011) = (2k+20102011) là số chẵn (vì 2k chẵn và 20102011 là số chẵn)
=> (n+20102011) chia hết cho 2.
Nên (n+20102011)(n+2011) chia hết cho 2
TH2: n là số lẻ => n = 2k+1 (k thuộc N), khi đó n + 2011 = 2k + 1 + 2011 = 2k + 2012 là số chẵn (vì 2k và 2012 là số chẵn)
=> n + 2011 chia hết cho 2
Nên (n+20102011)(n+2011) chia hết cho 2
Vậy (n+20102011)(n+2011) chia hết cho 2 với mọi n thuộc N
bài 1:a,
\(3^9.3:3^{10}+\left|2010^0\right|\)
=> \(3^9.3:3^{10}+\left|1\right|\)
=> \(3^9.3:3^{10}+1\)
=> \(3^{10}:3^{10}+1\)
=> 1+1
=> 2
b, \([\left(4^9:4^7\right):8-735^0]^{2011}\)
=> \([4^2:8-735^0]^{2011}\)
=> \([2^4:2^3-735^0]^{2011}\)
=> \([2-1]^{2011}\)
=> 1
c, \(8^{2x}:8=512\)
=> \(8^{2x}:8=8^3\)
=> \(8^{2x}=8^4\)
=> 2x=4
=> x=2
bài 2:
Theo đề ta có:
\(\left(7^0+7^1+7^2+7^3+......+7^{2010}+7^{2011}\right)\)
=> \((7^0+7^1)+(7^2+7^3)+......+(7^{2010}+7^{2011})\)
=> \(7^0.\left(1+7\right)+7^2\left(1+7\right)+..+7^{2010}\left(1+7\right)\)
=> \(7^0.8+7^2.8+..+7^{2010}.8\)
Mà \(7^0.8+7^2.8+..+7^{2010}.8\) \(⋮\) 8 ( vì có thừa số 8 nên chia hết cho 8)
nên \(\left(7^0+7^1+7^2+7^3+......+7^{2010}+7^{2011}\right)\)\(⋮\) 8
Bài 1 :
D = 71 + 72 + 73 + 74 +...+ 72010
Ta có : D = ( 71 + 7 ) + ( 73 + 74 ) +....+ ( 72009 + 72010 )
= 7 . ( 1+7 ) + 73 . ( 1+7 ) +...+ 72009 . ( 1+7 )
= 7 . 8 + 73 .8 +....+ 72009 .8
= 8 . ( 7 + 73 + .....+ 72009 ) ⋮ 8
⋮ 57 thì tương tự nhé .
Bài 2 :
Trên lớp đã làm .
Bài 3 :
a) Số tự nhiên A đó là số chẵn
b) Số A có chia hết cho 5
c) Chữ số tận cùng của A = 0
Bài 4 :
a) x = 0 hoặc 1
b) x = 0
c) x = 0
( Bài này mình không chắc )
Bài 5 :
9x + 5y = 17 . ( x + y ) = 4 . ( 2x + 3y )
Vì 17 . ( x+ y )⋮ 17
2x + 3y ⋮ 17
➜ 9x + 5y ⋮ 17
Tick cho tớ nhé ! ! ! ! !
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon
b1:
B=3+3^2+...+3^60=(3+3^2+3^3)+...+(3^58+3^59+3^60)=3(1+3+3^2)+...+3^58(1+3+3^2)=3*13+...+3^58*13=13(3+...+3^58) (CHIA HẾT CHO 13)
A=5+5^2+...+5^10=(5+5^2)+(5^3+5^4)+...+(5^9+5^10)=5(1+5)+...+5^9(1+5)=5*6+...+5^9*6=(5+...+5^9)*6(CHIA HẾT CHO 6)
B2: bạn kéo xuống dưới nãy mk thấy có ng làm r
b3: (2x+1)(y-5)=168
Ta có bảng sau:
2x+1 | 1 | 2 | 4 | 7 | 8 | 12 | 14 | 21 | 24 | 42 | 84 | 168 |
2x | 0 | 1 | 3 | 6 | 7 | 11 | 13 | 20 | 23 | 41 | 83 | 167 |
x | 0 | 3 | 10 | |||||||||
y-5 | 168 | 24 | 8 | |||||||||
y | 173 | 29 | 13 |
(mấy ô mk để trống là loại vì x,y là số tự nhiên)
Bài 1 :
72x+3 . 75-2x : 7x + 7x = 1
- > 7(2x+3)+(5-2x)-7 + 7x = 1
- > 71 + 7x = 1
- > 7x = 1 - 7 = -6 - > x thuộc rỗng