K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

giúp mik vs thứ 2 mik nộp rr huhu

16 tháng 7 2018

bài 1:

a)\(\left(3-\sqrt{2}\right)\sqrt{7+4\sqrt{3}}\)

\(=\left(3-\sqrt{2}\right)\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=\left(3-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)\(do2>\sqrt{3}\)

\(=6+3\sqrt{3}-2\sqrt{2}-\sqrt{6}\)

b) \(\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}\)

\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)

\(=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)do\sqrt{5}>\sqrt{2}\)

\(=\sqrt{15}-\sqrt{6}+5-\sqrt{10}\)

c)\(\left(2+\sqrt{5}\right)\sqrt{9-4\sqrt{5}}\)

\(=\left(2+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)do\sqrt{5}>2\)

\(=5-4\)

\(=1\left(hđt.3\right)\)

d)\(\left(\sqrt{6}+\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)

\(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{8-2\sqrt{15}}\)

\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)do\sqrt{5}>\sqrt{3}\)

\(=5-3\)

\(=2\)

e)\(\sqrt{2}\left(\sqrt{8}-\sqrt{32}+3\sqrt{18}\right)\)

\(=\sqrt{2}\left(2\sqrt{2}-4\sqrt{2}+9\sqrt{2}\right)\)

\(=2\left(2-4+9\right)\)

\(=2.7=14\)

f)\(\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\)

\(=2-\sqrt{6-2\sqrt{5}}\)

\(=2-\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=2-\left(\sqrt{5}-1\right)\)

\(=2-\sqrt{5}+1\)

\(=3-\sqrt{5}\)

g)\(\sqrt{3}-\sqrt{2}\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\sqrt{3}-\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\sqrt{3}-\sqrt{6}-2\)

h) \(\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right)\sqrt{2}+2\sqrt{5}\)

\(=\left(2-\sqrt{6+2\sqrt{5}}\right)+2\sqrt{5}\)

\(=\left(2-\sqrt{\left(\sqrt{5}+1\right)^2}\right)+2\sqrt{5}\)

\(=2-\left(\sqrt{5}+1\right)+2\sqrt{5}\left(do\sqrt{5}>1\right)\)

\(=2-\sqrt{5}-1+2\sqrt{5}\)

\(=1-\sqrt{5}\)

bài 2)

a) \(\sqrt{4x^2-4x+1}=5\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\)

\(\Leftrightarrow2x-1=5\)hoặc \(\Leftrightarrow2x-1=-5\)

\(\Leftrightarrow x=3\)hoặc \(\Leftrightarrow x=-2\)

Vậy x = 3 hoặc x = -2

19 tháng 6 2019

Bài 4 :

\(a,\sqrt{x-1}=2\)

=> \(x-1=2^2=4\)

=>\(x=4+1=5\)

Vậy \(x\in\left\{5\right\}\)

\(b,\sqrt{x^2-3x+2}=2\)

=> \(x^2-3x+2=2\)

=> \(x^2-3x=2-2=0\)

=>\(x.\left(x-3\right)=0\)( phân tích đa thức thanh nhân tử )

=> \(\left[{}\begin{matrix}x=0\\x-3=0=>x=0+3=3\end{matrix}\right.\)

Vậy \(x\in\left\{0;3\right\}\)

MÌNH Biết vậy thôi ,

19 tháng 6 2019

Bài 4 :

c) \(\sqrt{4x+1}=x+1\)ĐK : \(x\ge-1\)

\(\Leftrightarrow4x+1=\left(x+1\right)^2\)

\(\Leftrightarrow x^2+2x+1-4x-1=0\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)( thỏa )

d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)

+) Xét \(x\ge2\)

\(pt\Leftrightarrow\sqrt{x-1}+1-\sqrt{x-1}+1=2\)

\(\Leftrightarrow2=2\)( luôn đúng )

+) Xét \(1\le x< 2\):

\(pt\Leftrightarrow\sqrt{x-1}+1-1+\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\)( loại )

Vậy \(x\ge2\)

17 tháng 7 2019

\(a,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)

Ta có

:\(VT=\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)

\(=|2-\sqrt{5}|-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}\)

\(=-2=VP\left(đpcm\right)\)

\(b,\frac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}\)

Ta có:

\(VT=\frac{\sqrt{2}+1}{\sqrt{2}-1}\)

\(=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

\(=\frac{2+\sqrt{2}+\sqrt{2}+1}{\sqrt{2}^2-1^2}\)

\(=\frac{3+2\sqrt{2}}{2-1}\)

\(=3+2\sqrt{2}=VP\left(đpcm\right)\)

17 tháng 7 2019

c,Bạn xem lại đề

\(d,\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}=8\)

Ta có:

\(VT=\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)

\(=\sqrt{\frac{2^2}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{2^2}{\left(2+\sqrt{5}\right)^2}}\)

\(=\frac{2}{|2-\sqrt{5}|}-\frac{2}{|2+\sqrt{5}|}\)

\(=\frac{2\left(2+\sqrt{5}\right)}{\left(\sqrt{5}-2\right)\left(2+\sqrt{5}\right)}-\frac{2\left(\sqrt{5}-2\right)}{\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)}\)

\(=\frac{4+2\sqrt{5}-2\sqrt{5}+4}{\sqrt{5}^2-2^2}\)

\(=\frac{8}{5-4}\)

\(=8=VP\left(đpcm\right)\)

26 tháng 7 2018

Giup mình phần 3,4,5 của bài 2 với bài 4 nữa . Helpppp me !!

17 tháng 7 2019

a) \(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}\)

\(=\sqrt{75}-\sqrt{\frac{16}{3}}+\frac{9}{2}\sqrt{\frac{8}{3}}+2\sqrt{27}\)

\(=5\sqrt{3}-\frac{4}{\sqrt{3}}+3\sqrt{6}+6\sqrt{3}\)

\(=-\frac{4}{\sqrt{3}}+5\sqrt{3}+3\sqrt{6}+6\sqrt{3}\)

\(=-\frac{4}{\sqrt{3}}+11\sqrt{3}+3\sqrt{6}\)

\(=-\frac{4\sqrt{3}}{3}+11\sqrt{3}+3\sqrt{6}\)

b) \(\sqrt{48}-\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}\)

\(=\sqrt{48}-\sqrt{\frac{16}{3}}+2\sqrt{75}-5\sqrt{\frac{4}{3}}\)

\(=4\sqrt{3}-\frac{4}{\sqrt{3}}+10\sqrt{3}-\frac{10}{\sqrt{3}}\)

\(=-\frac{4}{\sqrt{3}}-\frac{10}{\sqrt{3}}+4\sqrt{3}+10\sqrt{3}\)

\(=-\frac{14\sqrt{3}}{3}+4\sqrt{3}+10\sqrt{3}\)

\(=-\frac{14\sqrt{3}}{3}+14\sqrt{3}\)

c)\(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}\)

\(=27+12\sqrt{5}+12\sqrt{5}\)

\(=27+24\sqrt{5}\)

d)\(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)\)

\(=\sqrt{6}+2-\sqrt{3}-\sqrt{2}\)

e) \(\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4\)

\(=4+2\sqrt{3}-2\sqrt{3}+4\)

= 8

f) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}\)

\(=\frac{7-4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}+\frac{7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)

\(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)

\(=\frac{14}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)

= 14

17 tháng 7 2019

a) \(2\sqrt{2}.\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)

\(=2\sqrt{2}.\left(\sqrt{3}-2\right)+9+4\sqrt{2}-2\sqrt{6}\)

\(=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}\)

= 9 (đpcm)

b) \(\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)

\(=\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2^{\frac{1}{2}}\left(\sqrt{2}-1\right)}\)

\(=\sqrt{2\left(\sqrt{2}-1\right)}\) (đpcm)