Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
1.
a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)
b) x=0
d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)
e) \(x=\frac{2}{3}\)
bạn ơi trả lời được câu này kông
( x + 1 ) + ( x - 3 ) + ( x + 5 ) + ............ + ( x +9) = 35
1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)
2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)
3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)
\(\left|x-3\right|+\left|x+2\right|=7\)
-TH: \(x< -2\) thì ta được phương trình :
\(3-x+-x-2=7\)
\(\Leftrightarrow-2x=6\)
\(\Leftrightarrow x=-3\left(c\right)\)
-TH: \(-2\le x< 3\) thì ta được phương trình:
\(3-x+x+2=7\)
\(\Leftrightarrow5=7\)(vô lí nên loại)
-TH: \(x\ge3\) thì ta được phương trình:
\(x-3+x+2=7\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\left(c\right)\)
Vậy nghiệm của phương trình là \(S=\left\{-3;4\right\}\)
3a)Ta xét:
-TH: \(x< 0\) thì \(x-2< 0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\left(l\right)\)
-TH: \(0< x< 2\) thì \(x>0\), \(x-2< 0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)>0\left(c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-2< 0\\x-3< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< 2\\x< 3\end{matrix}\right.\)
\(\Rightarrow0< x< 2\)
-TH: \(2< x< 3\) thì \(x>0\), \(x-2>0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\left(l\right)\)
-TH: \(x>3\) thì \(x>0\), \(x-2>0\) và \(x-3>0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-2>0\\x-3>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\\x>3\end{matrix}\right.\)
\(\Rightarrow x>3\)
Vậy nghiệm của phương trình là 0<x<2 và x>3
b)Dựa vào câu a ta có:
-TH: \(x< 0\) thì \(x-2< 0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\)
\(\Rightarrow\left\{{}\begin{matrix}x< 0\\x< 2\\x< 3\end{matrix}\right.\)
\(\Rightarrow x< 0\)
-TH:\(2< x< 3\) thì \(x>0\), \(x-2>0\), \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\\x< 3\end{matrix}\right.\)
\(\Rightarrow2< x< 3\)
Vậy nghiệm của phương trình là x<0 và 2<x<3
Không biết có đúng không nữa