K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

Rình mãi ms được 1 câu!

Bài 3:

\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

Đặt \(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(A=\left[\left(x+1\right).\left(x+7\right)\right].\left[\left(x+3\right).\left(x+5\right)\right]+15\)

\(A=\left(x^2+7x+x+7\right).\left(x^2+5x+3x+15\right)+15\)

\(A=\left(x^2+8x+7\right).\left(x^2+8x+15\right)+15\)

Đặt \(t=x^2+8x+7\Rightarrow t+8=x^2+8x+15\)

\(\Rightarrow A=t.\left(t+8\right)+15\)

\(A=t^2+8t+15=t^2+3t+5t+15\)

\(A=\left(t^2+3t\right)+\left(5t+15\right)=t.\left(t+3\right)+5.\left(t+3\right)\)

\(A=\left(t+3\right).\left(t+5\right)\)

\(t=x^2+8x+7\) nên

\(A=\left(x^2+8x+7+3\right).\left(x^2+8x+7+5\right)\)

\(A=\left(x^2+8x+10\right).\left(x^2+8x+12\right)\)

\(A=\left(x^2+8x+10\right).\left(x^2+2x+6x+12\right)\)

\(A=\left(x^2+8x+10\right).\left[\left(x^2+2x\right)+\left(6x+12\right)\right]\)

\(A=\left(x^2+8x+10\right).\left[x.\left(x+2\right)+6.\left(x+2\right)\right]\)

\(A=\left(x^2+8x+10\right).\left(x+2\right).\left(x+6\right)\)

Chúc bạn học tốt!!!

9 tháng 6 2017

học tốt gì ?????????

16 tháng 7 2019

\(x^5+y^5-\left(x+y\right)^5\)

\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+8xy^4+y^5\right)\)

\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)

\(=-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)

\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)

3 tháng 12 2017

Bài a) nhóm thành 2 nhóm; nhóm thứ nhất gồm số hạng đầu và cuối

bài b) dùng hằng đẳng thức là đc rồi

10 tháng 6 2017

Bài 1:

a, \(x^2-x-12\)

\(=x^2-4x+3x-12=\left(x^2-4x\right)+\left(3x-12\right)\)

\(=x.\left(x-4\right)+3.\left(x-4\right)=\left(x-4\right).\left(x+3\right)\)

b, \(x^2+8x+15\)

\(=x^2+3x+5x+15=\left(x^2+3x\right)+\left(5x+15\right)\)

\(=x.\left(x+3\right)+5.\left(x+3\right)=\left(x+3\right).\left(x+5\right)\)

c, \(x^{16}+x^8-2\)

\(=x^{16}-x^8+2x^8-2=\left(x^{16}-x^8\right)+\left(2x^8-2\right)\)

\(=x^8.\left(x^8-1\right)+2.\left(x^8-1\right)=\left(x^8-1\right)\left(x^8+2\right)\)

d, \(x^2+7x+12\)

\(=x^2+3x+4x+12=\left(x^2+3x\right)+\left(4x+12\right)\)

\(=x.\left(x+3\right)+4.\left(x+3\right)=\left(x+3\right).\left(x+4\right)\)

Chúc bạn học tốt!!!

10 tháng 6 2017

1,2,4 sử dụng Casio

3 tháng 12 2017

a,Ta có: \(x^3-4x^2-12x+27=x^3+3x^2-7x^2-21x+9x+27=x^2(x+3)-7x(x+3)+9(x+3)=(x+3)(x^2-7x+9)\)b,

\(25(x-y)^2-16(x+y)^2=(5x-5y+4x+4y)(5x-5y-4x-4y)=(9x-y)(x-9y)\)c,\(x^4+x^3+x+1=x^3(x+1)+(x+1)=(x^3+1)(x+1)=(x+1)^2(x^2-x+1)\)d, \(x(x+1)^2+x(x-5)-5(x+1)^2=(x+1)^2(x-5)+x(x-5)=(x-5)(x^2+3x+1)\)e,\(x^2-x-6=x^2-3x+2x-6=x(x-3)+2(x-3)=(x-3)(x+2)\)f,\(x^3-19x-30=x^3-5x^2+5x^2-25x+6x-30=(x-5)(x^2+5x+6)=(x-5)(x^2+2x+3x+6)=(x-5)(x+2)(x+3)\)

3 tháng 12 2017

nãy bài 1 mk gửi thiếu 1 ý

\(x^2y+xy^2-x+y\)

có ai giúp mk ý này k

bài 2 thì k cần lm cũng đc nhé vì mk biết làm rùi còn mỗi ý này thui hu hu

Bài 1:Tínha) \(\left(x+2\right)\left(x^2-2x+4\right)+\left(1-x\right)\left(1+x+x^2\right)\)b) \(7x\left(4x-2\right)-\left(x-3\right)\left(x+1\right)+16x\)c) \(A=\frac{x^2-6xy+9y^2}{x^2-9y^2}\)d) \(B=\frac{8}{x^2+4x}+\frac{5}{x+4}-\frac{2}{x}\)Bài 2:Phân tích đa thức thành nhân tửa) \(x^2-3x-15\)b) \(x^2-9x+4\)c) \(x^2-12x+32\)d) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)e) \(x^4-2x^3-3x^2-4x-1\)f) \(x^3+x^2-x+2\)Bài 3: Cho x,y là các số thực...
Đọc tiếp

Bài 1:Tính

a) \(\left(x+2\right)\left(x^2-2x+4\right)+\left(1-x\right)\left(1+x+x^2\right)\)

b) \(7x\left(4x-2\right)-\left(x-3\right)\left(x+1\right)+16x\)

c) \(A=\frac{x^2-6xy+9y^2}{x^2-9y^2}\)

d) \(B=\frac{8}{x^2+4x}+\frac{5}{x+4}-\frac{2}{x}\)

Bài 2:Phân tích đa thức thành nhân tử

a) \(x^2-3x-15\)

b) \(x^2-9x+4\)

c) \(x^2-12x+32\)

d) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

e) \(x^4-2x^3-3x^2-4x-1\)

f) \(x^3+x^2-x+2\)

Bài 3: Cho x,y là các số thực sao cho \(x+y\);\(x^2+y^2\);\(x^4+y^4\)là các số nguyên.CMR: \(2x^2y^2\)và \(x^3+y^3\)là các số nguyên

Bài 4: Rút gọn phân thức:

a) \(\frac{x^3+y^3+z^3\cdot3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

b) \(\frac{x^4-2x^2+1}{x^3-3x-2}\)

Bài 5:Cho \(abc=1\)

Tính giá trị của biểu thức \(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

Đề thi bắt đầu đến 11 h kế thúc có 1 giải 1 và 2 giải 2 thui nha cố lên nào giải 3 vô hạn nhưng trên 5 điểm

 

11
14 tháng 9 2019

a. \(=x^3+2^3+1^3-x^3\)

\(=\left(x^3-x^3\right)+8+1\)

\(=0+8+1\)

\(=9\)

14 tháng 9 2019

Bài 1 :

a) ( x + 2 )( x2 - 2x + 4 ) + (1 - x)(1+x+ + x2 )

= ( x3 - 8 ) + ( 1 - x3 )

= x3 - 8 + 1 - x3

= 7

b) 7x( 4x - 2) - ( x - 3)( x+1 ) + 16x

= 28x2 - 14x - x2 - x + 3x + 3 + 16x

= 27x2  + 3

a: \(=2x^{2n+1-2n}-2\cdot x^{2n}\cdot3\cdot x^{2-2n}+3\cdot x^{2n-1+1-2n}-9\cdot x^{2n-1+2-2n}\)

\(=2x-6x^2+3-9x\)

\(=-6x^2-7x+3\)

b: \(=\left(5x\right)^3-\left(2y\right)^3=125x^3-8y^3\)

 

(4x2)(10x+4)(5x+7)(2x+1)+17=0(4x−2)(10x+4)(5x+7)(2x+1)+17=0

(4x2)(5x+7)(10x+4)(2x+1)+17=0⇔(4x−2)(5x+7)(10x+4)(2x+1)+17=0

(20x2+18x14)(20x2+18x+4)+17=0⇔(20x2+18x−14)(20x2+18x+4)+17=0

Đặt t= 20x2+18x+4(t0)20x2+18x+4(t≥0) ta có:

(t-18).t +17=0

t218t+17=0⇔t2−18t+17=0

(t17)(t1)=0⇔(t−17)(t−1)=0

[t=17(tm)t=1(tm)⇔[t=17(tm)t=1(tm) [20x2+18x+4=1720x2+18x+4=1[20x2+18x13=020x2+18+3=0⇔[20x2+18x+4=1720x2+18x+4=1⇔[20x2+18x−13=020x2+18+3=0

[(20x+9341)(20x+9+341)=0(20x+921)(20x+9+21)=0⇔[(20x+9−341)(20x+9+341)=0(20x+9−21)(20x+9+21)=0

x=9+34120x=934120x=9+2120x=92120

6 tháng 6 2019

\(a,\)\(\left(4x-2\right)\left(10x+4\right)\left(5x+7\right)\left(2x+1\right)+17\)

\(=\left(4x-2\right)\left(5x+7\right)\left(10x+4\right)\left(2x+1\right)+17\)

\(=\left(20x^2+18x-5\right)\left(20x^2+18x+4\right)+17\)

Đặt ....

14 tháng 8 2016

Bài 1:

Ta có : \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)

\(\Leftrightarrow\left[\left(x^2-1\right)\left(x^2-10\right)\right].\left[\left(x^2-4\right)\left(x^2-7\right)\right]< 0\)

\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)

Đặt \(y=x^4-11x^2+19\), ta có : \(\left(y-9\right)\left(y+9\right)< 0\)

\(\Leftrightarrow y^2< 81\Leftrightarrow-9< y< 9\) \(\Leftrightarrow\hept{\begin{cases}y>-9\left(1\right)\\y< 9\left(2\right)\end{cases}}\)

Giải (1) được : \(x^4-11x^2+28>0\) \(\Leftrightarrow\left(x^2-7\right)\left(x^2-4\right)>0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2>7\\x^2< 4\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>\sqrt{7}\\x< -\sqrt{7}\end{cases}}\)hoặc  \(-2< x< 2\)

Giải (2) được : 

\(\Leftrightarrow\hept{\begin{cases}x^2< 1\\x^2>10\end{cases}}\)(loại)  hoặc \(1< x^2< 10\)(nhận)

\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 10\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x< -1\\x>1\end{cases}}\)và \(-\sqrt{10}< x< \sqrt{10}\)

\(\Rightarrow\orbr{\begin{cases}-\sqrt{10}< x< -1\\1< x< \sqrt{10}\end{cases}}\)

Kết hợp (1) và (2) : \(-2< x< -1\);;\(1< x< 2\)\(\sqrt{7}< x< \sqrt{10}\)\(-\sqrt{10}< x< -\sqrt{7}\)

Suy ra các giá trị nguyên của x là : \(x\in\left\{-3;3\right\}\)

14 tháng 8 2016

Bài 1: 

Có: \(x^2-10< x^2-7< x^2-4< x^2-1\)

Để tích trên < 0

\(\left(x^2-1\right);\left(x^2-4\right);\left(x^2-7\right)\)cùng dương và \(\left(x^2-10\right)\)âm

\(\Rightarrow x^2-10< 0\)\(x^2-7>0\)

\(\Rightarrow x^2< 10\)và \(x^2>7\)

\(\Rightarrow7< x^2< 10\)

\(\Rightarrow x^2=9\Rightarrow x=+;-3\)

11 tháng 10 2019

Bài 1: Đặt \(f\left(x\right)=\left(x^2+x+1\right)^{10}+\left(x^2-x+1\right)^{10}-2\)

Giả sử  \(f\left(x\right)\)chia hết cho x-1

\(\Rightarrow f\left(x\right)=\left(x-1\right)q\left(x\right)\)

\(\Rightarrow f\left(1\right)=\left(1-1\right)q\left(1\right)\)

               \(=0\)

\(\Leftrightarrow\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=0\)

Mà \(\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=59048\)

\(\Rightarrow\)mâu thuẫn 

\(\Rightarrow f\left(x\right)\)không chia hết cho x-1 ( trái với đề bài )

Bài 2:

x^4-x^3-3x^2+ax+b x^2-x-2 x^2-1 x^4-x^3-2x^2 - - -x^2+ax+b -x^2+x+2 - (a-1)x+b-2

Vì \(x^4-x^3-3x^2+ax+b\)chia cho \(x^2-x-2\)dư \(2x-3\)

\(\Rightarrow\left(a-1\right)x+b-2=2x-3\)

Đồng nhất hệ  số 2 vế ta được:

\(\hept{\begin{cases}a-1=2\\b-2=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=3\\b=-1\end{cases}}\)

Vậy ...

Bài 3:

Vì \(P\left(x\right)\)chia \(x+3\)dư 1

\(\Rightarrow P\left(x\right)=\left(x+3\right)q\left(x\right)+1\)

\(\Rightarrow q\left(-3\right)=\left(-3+3\right)q\left(-3\right)+1\)

                      \(=1\left(1\right)\)

Vì \(P\left(x\right)\)chia \(x-4\)dư 8

\(\Rightarrow P\left(x\right)=\left(x-4\right)q\left(x\right)+8\)

\(\Rightarrow P\left(4\right)=\left(4-4\right)q\left(4\right)+8\)

                    \(=8\left(2\right)\)

Vì \(P\left(x\right)\)chia cho \(\left(x+3\right)\left(x-4\right)\)được thương là 3x và còn dư

\(\Rightarrow P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+ax+b\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow\hept{\begin{cases}-3a+b=1\\4a+b=8\end{cases}\Leftrightarrow\hept{\begin{cases}-12a+3b=4\\12a+3b=24\end{cases}\Leftrightarrow}\hept{\begin{cases}b=4\\a=1\end{cases}\left(4\right)}}\)

Thay (4) vào (3) ta được:

\(P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+x+4\)

\(\Leftrightarrow P\left(x\right)=3x^3-3x^2-20x+4\)

11 tháng 10 2019

cảm ơn nhé