K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2018

1) Trên cùng nửa mặt phẳng bờ OA, ta có \(\widehat{AOB}< \widehat{AOC}\)nên OB nằm giữa OA, OC, suy ra \(\widehat{AOB}+\widehat{BOC}=\widehat{AOC}\)

OD là phân giác \(\widehat{AOB}\)nên AD nằm giữa OA, OB, suy ra \(\widehat{AOD}+\widehat{DOB}=\widehat{AOB}\). Ngoài ra, \(\widehat{AOD}=\widehat{DOB}< \widehat{AOB}\)

\(\widehat{AOD}< \widehat{AOB};\widehat{AOB}< \widehat{AOC}\Rightarrow\widehat{AOD}< \widehat{AOC}\).

Trên cùng nửa mặt phẳng bờ OA, ta có \(\widehat{AOD}< \widehat{AOC}\)nên OD nằm giữa OA,OC, suy ra \(\widehat{AOD}+\widehat{DOC}=\widehat{AOC}\)

\(\Leftrightarrow\widehat{AOD}+\widehat{DOC}=\widehat{AOB}+\widehat{BOC}\Leftrightarrow\widehat{AOD}+\widehat{DOC}=\widehat{AOD}+\widehat{DOB}+\widehat{BOC}\)

\(\Leftrightarrow\widehat{DOC}=\widehat{DOB}+\widehat{BOC}\Leftrightarrow\) OB nằm giữa OD, OC

2) \(\frac{\widehat{COB}+\widehat{COA}}{2}=\frac{\widehat{COB}+\widehat{AOD}+\widehat{DOB}+\widehat{BOC}}{2}=\frac{2\left(\widehat{COB}+\widehat{DOB}\right)}{2}=\widehat{COD}\)

a: \(\widehat{AOB}=\dfrac{\left(140^0+20^0\right)}{2}=80^0\)

nên \(\widehat{BOC}=60^0\)

b: \(\widehat{mOn}=\widehat{mOB}+\widehat{nOB}=\dfrac{1}{2}\cdot140^0=70^0\)