Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)
\(\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)
\(\Leftrightarrow ab-6a+5b-30=ab+6a-5b-30\)
=>-6a+5b=6a-5b
=>-12a=-10b
=>6a=5b
hay a/b=5/6
a: 2x+3>=1
=>2x>=-2
hay x>=-1
b: -3x+4<=5
=>-3x<=1
hay x>=-1/3
c: 3x+5<4-2x
=>5x<-1
hay x<-1/5
d: 1/2x+7>-5/2
=>1/2x>-19/2
hay x>-19
1.Tìm x, biết:
x/3=y/5
Theo tính chất dãy tỉ số bằng nhau ta có:
x+y/3+5= 16/8=2
=>x=6; y=10
2.Cho a+5/a−5=b+6/b−6(a≠5;b≠6)
CMR: ab=56
Giải:
ta có a+5/a-5=b+6/b-6 =>a+5/b+6=a-5/b-6 (*)
=> a+5+a-5/b+6+b-6=2a/2b=a/b (1)
Lại có: (*)=a+5-a+5/b+6-b+6=10/12=5/6 (2)
Từ 1 và 2 suy ra a/b=5/6 (đpcm)
>> Mình không chép lại đề bài nhé ! <<
Cách 1 :
\(A=\left(\dfrac{36-4+3}{6}\right)-\left(\dfrac{30+10-9}{6}\right)-\left(\dfrac{18-14+15}{6}\right)=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}=-\dfrac{15}{6}=-\dfrac{5}{2}\)
Cách 2 :
\(A=6-\dfrac{2}{3}+\dfrac{1}{2}-5+\dfrac{5}{3}-\dfrac{3}{2}-3-\dfrac{7}{3}+\dfrac{5}{2}\)
\(A=\left(6-5-3\right)-\left(\dfrac{2}{3}+\dfrac{5}{3}-\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)
\(A=-2-0-\dfrac{1}{2}=-\dfrac{5}{2}\)
Cách 1 :
\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)
\(=\left(\dfrac{36}{6}-\dfrac{4}{6}+\dfrac{3}{6}\right)-\left(\dfrac{30}{6}+\dfrac{10}{6}-\dfrac{9}{6}\right)-\left(\dfrac{18}{6}-\dfrac{14}{6}+\dfrac{15}{6}\right)\)
\(=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}\)
\(=-\dfrac{5}{2}\)
Cách 2 :
\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)
\(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)
\(=\left(6-5-3\right)+\left(\dfrac{-2}{3}+\dfrac{-5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{-5}{2}\right)\)
\(=\left(-2\right)+0+\dfrac{-1}{2}\)
\(=\dfrac{-5}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x+y}{5}=\dfrac{x-y}{8}=\dfrac{x+y+x-y}{5+8}=\dfrac{2x}{13}=\dfrac{4x}{26}\)
Ta có:
\(\dfrac{x+y}{5}=\dfrac{xy}{26};\dfrac{x+y}{5}=\dfrac{4x}{26}\\ \Rightarrow\dfrac{xy}{26}=\dfrac{4x}{26}\Rightarrow y=4\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x+y}{5}=\dfrac{x-y}{8}=\dfrac{x+y-x+y}{5-8}=\dfrac{2y}{-3}\)
Ta có:
\(\dfrac{x-y}{8}=\dfrac{xy}{26};\dfrac{x-y}{8}=\dfrac{2y}{-3}\\ \Rightarrow\dfrac{xy}{26}=\dfrac{2y}{-3}\Rightarrow-3xy=52y\Leftrightarrow-3x=52\Rightarrow x=\dfrac{-52}{3}\)
Vậy \(x=-\dfrac{52}{3};y=4\)
\(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}=\dfrac{x+1}{5}+\dfrac{x+1}{6}\)
\(\Leftrightarrow\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}-\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)
Mà \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\ne0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy ..
\(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}=\dfrac{x+1}{5}+\dfrac{x+1}{6}\)
=> \(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}-\dfrac{x+1}{5}-\dfrac{x+1}{6}\)= 0
(x + 1).(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\)) = 0
Ta thấy \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\) > 0
=> x + 1 = 0
x = 0 - 1
x = -1
Bài 1:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=10\end{matrix}\right.\)
Vậy x = 6, y = 10
Bài 2:
Ta có: \(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)
\(\Rightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)
\(\Rightarrow ab-6a+5b-30=ab+6a-5b-30\)
\(\Rightarrow-6a+5b=6a-5b\)
\(\Rightarrow10b=12a\)
\(\Rightarrow6a=5b\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{5}{6}\)
\(\Rightarrowđpcm\)
B1 :
+ Theo bài ra :
\(\dfrac{x}{3}=\dfrac{y}{5}\left(1\right)\)và \(x+y=16\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\)
+ Do đó :
\(\dfrac{x}{3}=2\Rightarrow x=2.3=6\)
\(\dfrac{y}{5}=2\Rightarrow y=2.5=10\)
Vậy x = 6 ; y = 10